Category Archives: Artificial Intelligence

Modelling emotions in adaptive agents through the action selection part of reinforcement learning, plus some references on the neurophysiological bases of RL and a good review of literature on emotions

Joost Broekens , Elmer Jacobs , Catholijn M. Jonker, A reinforcement learning model of joy, distress, hope and fear, Connection Science, Vol. 27, Iss. 3, 2015, DOI: 10.1080/09540091.2015.1031081.

In this paper we computationally study the relation between adaptive behaviour and emotion. Using the reinforcement learning framework, we propose that learned state utility, V(s), models fear (negative) and hope (positive) based on the fact that both signals are about anticipation of loss or gain. Further, we propose that joy/distress is a signal similar to the error signal. We present agent-based simulation experiments that show that this model replicates psychological and behavioural dynamics of emotion. This work distinguishes itself by assessing the dynamics of emotion in an adaptive agent framework – coupling it to the literature on habituation, development, extinction and hope theory. Our results support the idea that the function of emotion is to provide a complex feedback signal for an organism to adapt its behaviour. Our work is relevant for understanding the relation between emotion and adaptation in animals, as well as for human–robot interaction, in particular how emotional signals can be used to communicate between adaptive agents and humans.

Good review of similarity measures between elements with semantics

Mohammad Taher Pilehvar, Roberto Navigli, From senses to texts: An all-in-one graph-based approach for measuring semantic similarity, Artificial Intelligence, Volume 228, November 2015, Pages 95-128, ISSN 0004-3702, DOI: 10.1016/j.artint.2015.07.005.

Quantifying semantic similarity between linguistic items lies at the core of many applications in Natural Language Processing and Artificial Intelligence. It has therefore received a considerable amount of research interest, which in its turn has led to a wide range of approaches for measuring semantic similarity. However, these measures are usually limited to handling specific types of linguistic item, e.g., single word senses or entire sentences. Hence, for a downstream application to handle various types of input, multiple measures of semantic similarity are needed, measures that often use different internal representations or have different output scales. In this article we present a unified graph-based approach for measuring semantic similarity which enables effective comparison of linguistic items at multiple levels, from word senses to full texts. Our method first leverages the structural properties of a semantic network in order to model arbitrary linguistic items through a unified probabilistic representation, and then compares the linguistic items in terms of their representations. We report state-of-the-art performance on multiple datasets pertaining to three different levels: senses, words, and texts.

Extending probabilistic logic programming with continuous r.v.s, and a nice and brief introduction to programming logic and probabilistic inference

Steffen Michels, Arjen Hommersom, Peter J.F. Lucas, Marina Velikova, A new probabilistic constraint logic programming language based on a generalised distribution semantics, Artificial Intelligence, Volume 228, November 2015, Pages 1-44, ISSN 0004-3702, DOI: 10.1016/j.artint.2015.06.008.

Probabilistic logics combine the expressive power of logic with the ability to reason with uncertainty. Several probabilistic logic languages have been proposed in the past, each of them with their own features. We focus on a class of probabilistic logic based on Sato’s distribution semantics, which extends logic programming with probability distributions on binary random variables and guarantees a unique probability distribution. For many applications binary random variables are, however, not sufficient and one requires random variables with arbitrary ranges, e.g. real numbers. We tackle this problem by developing a generalised distribution semantics for a new probabilistic constraint logic programming language. In order to perform exact inference, imprecise probabilities are taken as a starting point, i.e. we deal with sets of probability distributions rather than a single one. It is shown that given any continuous distribution, conditional probabilities of events can be approximated arbitrarily close to the true probability. Furthermore, for this setting an inference algorithm that is a generalisation of weighted model counting is developed, making use of SMT solvers. We show that inference has similar complexity properties as precise probabilistic inference, unlike most imprecise methods for which inference is more complex. We also experimentally confirm that our algorithm is able to exploit local structure, such as determinism, which further reduces the computational complexity.

Transfer learning in reinforcement learning through case-based and the use of heuristics for selecting actions

Reinaldo A.C. Bianchi, Luiz A. Celiberto Jr., Paulo E. Santos, Jackson P. Matsuura, Ramon Lopez de Mantaras, Transferring knowledge as heuristics in reinforcement learning: A case-based approach, Artificial Intelligence, Volume 226, September 2015, Pages 102-121, ISSN 0004-3702, DOI: 10.1016/j.artint.2015.05.008.

The goal of this paper is to propose and analyse a transfer learning meta-algorithm that allows the implementation of distinct methods using heuristics to accelerate a Reinforcement Learning procedure in one domain (the target) that are obtained from another (simpler) domain (the source domain). This meta-algorithm works in three stages: first, it uses a Reinforcement Learning step to learn a task on the source domain, storing the knowledge thus obtained in a case base; second, it does an unsupervised mapping of the source-domain actions to the target-domain actions; and, third, the case base obtained in the first stage is used as heuristics to speed up the learning process in the target domain.
A set of empirical evaluations were conducted in two target domains: the 3D mountain car (using a learned case base from a 2D simulation) and stability learning for a humanoid robot in the Robocup 3D Soccer Simulator (that uses knowledge learned from the Acrobot domain). The results attest that our transfer learning algorithm outperforms recent heuristically-accelerated reinforcement learning and transfer learning algorithms.

Example of application of bayesian network learning and inference to robotics, and a brief but useful related work on learning by imitation

Dan Song; Ek, C.H.; Huebner, K.; Kragic, D., Task-Based Robot Grasp Planning Using Probabilistic Inference, Robotics, IEEE Transactions on , vol.31, no.3, pp.546,561, June 2015, DOI: 10.1109/TRO.2015.2409912.

Grasping and manipulating everyday objects in a goal-directed manner is an important ability of a service robot. The robot needs to reason about task requirements and ground these in the sensorimotor information. Grasping and interaction with objects are challenging in real-world scenarios, where sensorimotor uncertainty is prevalent. This paper presents a probabilistic framework for the representation and modeling of robot-grasping tasks. The framework consists of Gaussian mixture models for generic data discretization, and discrete Bayesian networks for encoding the probabilistic relations among various task-relevant variables, including object and action features as well as task constraints. We evaluate the framework using a grasp database generated in a simulated environment including a human and two robot hand models. The generative modeling approach allows the prediction of grasping tasks given uncertain sensory data, as well as object and grasp selection in a task-oriented manner. Furthermore, the graphical model framework provides insights into dependencies between variables and features relevant for object grasping.

Reinforcement learning when a human is the one providing the rewards to the algorithm

W. Bradley Knox, Peter Stone, Framing reinforcement learning from human reward: Reward positivity, temporal discounting, episodicity, and performance, Artificial Intelligence, Volume 225, August 2015, Pages 24-50, ISSN 0004-3702, DOI: 10.1016/j.artint.2015.03.009.

Several studies have demonstrated that reward from a human trainer can be a powerful feedback signal for control-learning algorithms. However, the space of algorithms for learning from such human reward has hitherto not been explored systematically. Using model-based reinforcement learning from human reward, this article investigates the problem of learning from human reward through six experiments, focusing on the relationships between reward positivity, which is how generally positive a trainer’s reward values are; temporal discounting, the extent to which future reward is discounted in value; episodicity, whether task learning occurs in discrete learning episodes instead of one continuing session; and task performance, the agent’s performance on the task the trainer intends to teach. This investigation is motivated by the observation that an agent can pursue different learning objectives, leading to different resulting behaviors. We search for learning objectives that lead the agent to behave as the trainer intends.
We identify and empirically support a “positive circuits” problem with low discounting (i.e., high discount factors) for episodic, goal-based tasks that arises from an observed bias among humans towards giving positive reward, resulting in an endorsement of myopic learning for such domains. We then show that converting simple episodic tasks to be non-episodic (i.e., continuing) reduces and in some cases resolves issues present in episodic tasks with generally positive reward and—relatedly—enables highly successful learning with non-myopic valuation in multiple user studies. The primary learning algorithm introduced in this article, which we call “vi-tamer”, is the first algorithm to successfully learn non-myopically from reward generated by a human trainer; we also empirically show that such non-myopic valuation facilitates higher-level understanding of the task. Anticipating the complexity of real-world problems, we perform further studies—one with a failure state added—that compare (1) learning when states are updated asynchronously with local bias—i.e., states quickly reachable from the agent’s current state are updated more often than other states—to (2) learning with the fully synchronous sweeps across each state in the vi-tamer algorithm. With these locally biased updates, we find that the general positivity of human reward creates problems even for continuing tasks, revealing a distinct research challenge for future work.

Heuristic, real-time search with weighted heuristic function

Nicolás Rivera, Jorge A. Baier, Carlos Hernández, Incorporating weights into real-time heuristic search, Artificial Intelligence, Volume 225, August 2015, Pages 1-23, ISSN 0004-3702, DOI: 10.1016/j.artint.2015.03.008.

Multiplying the heuristic function by a weight greater than one is a well-known technique in heuristic search. When this technique is applied to A* with an admissible heuristic it yields substantial runtime savings, at the expense of sacrificing solution optimality. Its applicability to real-time heuristic search, a search approach that builds upon heuristic search, however, has only been explored by a few studies. In this article we present two new approaches to using weights in real-time heuristic search, applicable to a wide range of algorithms. The first one, weighted lookahead, is a variant of an existing approach by Shimbo and Ishida, and utilizes the weight while the algorithm performs lookahead search. The second one, weighted update, incorporates the weight to the edges of the search graph during the learning phase. We implemented both techniques within LSS-LRTA* and evaluated them in path-planning benchmarks. We show that weighted lookahead outperforms an existing approach by Shimbo and Ishida but that it does not improve over existing approaches that do not use weights. Weighted update, on the other hand, yields performance improvements of up to one order of magnitude both in solution cost and total search time. To illustrate further the generality of weighted update, we incorporate the technique in two other well-known real-time heuristic search algorithms: LRTA*-LS and daLSS-LRTA*, and we empirically show significant improvements for LRTA*-LS and modest but still important improvements for daLSS-LRTA*. We analyze the properties of weighted update in depth, showing, among other things, that it guarantees termination. Convergence behavior of LSS-LRTA*, modified to use weighted update, is also analyzed. In such a setting, we prove solutions are w-optimal, and provide additional bounds on solution quality that in practice are tighter than w-optimality.

Study of the explanation of probability and reasoning in the human mind through mental models, probability logic and classical logic

P.N. Johnson-Laird, Sangeet S. Khemlani, Geoffrey P. Goodwin, Logic, probability, and human reasoning, Trends in Cognitive Sciences, Volume 19, Issue 4, April 2015, Pages 201-214, ISSN 1364-6613, DOI: 10.1016/j.tics.2015.02.006.

This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn – not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction.

Survey of Hierarchical Task Planning

Ilche Georgievski, Marco Aiello, 2015, HTN planning: Overview, comparison, and beyond, Artificial Intelligence, Volume 222, May 2015, Pages 124-156, ISSN 0004-3702, DOI: 10.1016/j.artint.2015.02.002.

Hierarchies are one of the most common structures used to understand and conceptualise the world. Within the field of Artificial Intelligence (AI) planning, which deals with the automation of world-relevant problems, Hierarchical Task Network (HTN) planning is the branch that represents and handles hierarchies. In particular, the requirement for rich domain knowledge to characterise the world enables HTN planning to be very useful, and also to perform well. However, the history of almost 40 years obfuscates the current understanding of HTN planning in terms of accomplishments, planning models, similarities and differences among hierarchical planners, and its current and objective image. On top of these issues, the ability of hierarchical planning to truly cope with the requirements of real-world applications has been often questioned. As a remedy, we propose a framework-based approach where we first provide a basis for defining different formal models of hierarchical planning, and define two models that comprise a large portion of HTN planners. Second, we provide a set of concepts that helps in interpreting HTN planners from the aspect of their search space. Then, we analyse and compare the planners based on a variety of properties organised in five segments, namely domain authoring, expressiveness, competence, computation and applicability. Furthermore, we select Web service composition as a real-world and current application, and classify and compare the approaches that employ HTN planning to solve the problem of service composition. Finally, we conclude with our findings and present directions for future work. In summary, we provide a novel and comprehensive viewpoint on a core AI planning technique.

Abstracting and representing tasks performed under Learning from Demonstration, using bayesian non-parametric time-series analysis (good review of both LfD and HMMs for time-series)

Scott Niekum, Sarah Osentoski, George Konidaris, Sachin Chitta, Bhaskara Marthi, Andrew G. Barto (2015), Learning grounded finite-state representations from unstructured demonstrations, The International Journal of Robotics Research, vol. 34, pp. 131-157. DOI: 10.1177/0278364914554471

Robots exhibit flexible behavior largely in proportion to their degree of knowledge about the world. Such knowledge is often meticulously hand-coded for a narrow class of tasks, limiting the scope of possible robot competencies. Thus, the primary limiting factor of robot capabilities is often not the physical attributes of the robot, but the limited time and skill of expert programmers. One way to deal with the vast number of situations and environments that robots face outside the laboratory is to provide users with simple methods for programming robots that do not require the skill of an expert. For this reason, learning from demonstration (LfD) has become a popular alternative to traditional robot programming methods, aiming to provide a natural mechanism for quickly teaching robots. By simply showing a robot how to perform a task, users can easily demonstrate new tasks as needed, without any special knowledge about the robot. Unfortunately, LfD often yields little knowledge about the world, and thus lacks robust generalization capabilities, especially for complex, multi-step tasks. We present a series of algorithms that draw from recent advances in Bayesian non-parametric statistics and control theory to automatically detect and leverage repeated structure at multiple levels of abstraction in demonstration data. The discovery of repeated structure provides critical insights into task invariants, features of importance, high-level task structure, and appropriate skills for the task. This culminates in the discovery of a finite-state representation of the task, composed of grounded skills that are flexible and reusable, providing robust generalization and transfer in complex, multi-step robotic tasks. These algorithms are tested and evaluated using a PR2 mobile manipulator, showing success on several complex real-world tasks, such as furniture assembly.