Z. Gao et al., Self-Supervised Exploration via Temporal Inconsistency in Reinforcement Learning, IEEE Transactions on Artificial Intelligence, vol. 5, no. 11, pp. 5530-5539, Nov. 2024, DOI: 10.1109/TAI.2024.3413692.
In sparse extrinsic reward settings, reinforcement learning remains a challenge despite increasing interest in this field. Existing approaches suggest that intrinsic rewards can alleviate issues caused by reward sparsity. However, many studies overlook the critical role of temporal information, essential for human curiosity. This article introduces a novel intrinsic reward mechanism inspired by human learning processes, where curiosity is evaluated by comparing current observations with historical knowledge. Our method involves training a self-supervised prediction model, periodically saving snapshots of the model parameters, and employing the nuclear norm to assess the temporal inconsistency between predictions from different snapshots as intrinsic rewards. Additionally, we propose a variational weighting mechanism to adaptively assign weights to the snapshots, enhancing the model’s robustness and performance. Experimental results across various benchmark environments demonstrate the efficacy of our approach, which outperforms other state-of-the-art methods without incurring additional training costs and exhibits higher noise tolerance. Our findings indicate that leveraging temporal information in intrinsic rewards can significantly improve exploration performance, motivating future research to develop more robust and accurate reward systems for reinforcement learning.