A computational cognitive architecture that models emotion

Ron Sun, Nick Wilson, Michael Lynch, Emotion: A Unified Mechanistic Interpretation from a Cognitive Architecture, Cognitive Computation, February 2016, Volume 8, Issue 1, pp 1–14, DOI: 10.1007/s12559-015-9374-4.

This paper reviews a project that attempts to interpret emotion, a complex and multifaceted phenomenon, from a mechanistic point of view, facilitated by an existing comprehensive computational cognitive architecture—CLARION. This cognitive architecture consists of a number of subsystems: the action-centered, non-action-centered, motivational, and metacognitive subsystems. From this perspective, emotion is, first and foremost, motivationally based. It is also action-oriented. It involves many other identifiable cognitive functionalities within these subsystems. Based on these functionalities, we fit the pieces together mechanistically (computationally) within the CLARION framework and capture a variety of important aspects of emotion as documented in the literature.

Comments are closed.

Post Navigation