Category Archives: Psycho-physiological Bases Of Engineering

On the limited throughput of the human cognition and its implications, e.g., in Engineering

Jieyu Zheng1, and Markus Meister, The unbearable slowness of being: Why do we live at 10 bits/s?, Neuron (2024), DOI: 10.1016/j.neuron.2024.11.008.

This article is about the neural conundrum behind the slowness of human behavior. The information throughput of a human being is about 10 bits/s. In comparison, our sensory systems gather data at 10 bits/s. The stark contrast between these numbers remains unexplained and touches on fundamental aspects of brain function: what neural substrate sets this speed limit on the pace of our existence? Why does the brain need billions of neurons to process 10 bits/s? Why can we only think about one thing at a time? The brain seems to operate in two distinct modes: the ‘‘outer’’ brain handles fast high-dimensional sensory and motor signals, whereas the ‘‘inner’’ brain processes the reduced few bits needed to control behavior. Plausible explanations exist for the large neuron numbers in the outer brain, but not for the inner brain, and we propose new research directions to remedy this.

A good review of allostasis and control theory applied to physiology

Eli Sennesh, Jordan Theriault, Dana Brooks, Jan-Willem van de Meent, Lisa Feldman Barrett, Karen S. Quigley, Interoception as modeling, allostasis as control, Biological Psychology, Volume 167, 2022 DOI: 10.1016/j.biopsycho.2021.108242.

The brain regulates the body by anticipating its needs and attempting to meet them before they arise – a process called allostasis. Allostasis requires a model of the changing sensory conditions within the body, a process called interoception. In this paper, we examine how interoception may provide performance feedback for allostasis. We suggest studying allostasis in terms of control theory, reviewing control theory’s applications to related issues in physiology, motor control, and decision making. We synthesize these by relating them to the important properties of allostatic regulation as a control problem. We then sketch a novel formalism for how the brain might perform allostatic control of the viscera by analogy to skeletomotor control, including a mathematical view on how interoception acts as performance feedback for allostasis. Finally, we suggest ways to test implications of our hypotheses.

An inspiring formalization of the latest models of human emotions into RL

Aviv Emanuel, Eran Eldar, Emotions as Computations, Neuroscience & Biobehavioral Reviews, Volume 144, January 2023 DOI: 10.1016/j.neubiorev.2022.104977.

Emotions ubiquitously impact action, learning, and perception, yet their essence and role remain widely debated. Computational accounts of emotion aspire to answer these questions with greater conceptual precision informed by normative principles and neurobiological data. We examine recent progress in this regard and find that emotions may implement three classes of computations, which serve to evaluate states, actions, and uncertain prospects. For each of these, we use the formalism of reinforcement learning to offer a new formulation that better accounts for existing evidence. We then consider how these distinct computations may map onto distinct emotions and moods. Integrating extensive research on the causes and consequences of different emotions suggests a parsimonious one-to-one mapping, according to which emotions are integral to how we evaluate outcomes (pleasure & pain), learn to predict them (happiness & sadness), use them to inform our (frustration & content) and others’ (anger & gratitude) actions, and plan in order to realize (desire & hope) or avoid (fear & anxiety) uncertain outcomes.

The seminal work on the “firstly cooperate, then repeat other’s actions” strategy in game theory

Robert Axelrod; William D. Hamilton, The Evolution of Cooperation, Science, New Series, Vol. 211, No. 4489. (Mar. 27, 1981), pp. 1390-1396 https://ee.stanford.edu/~hellman/Breakthrough/book/pdfs/axelrod.pdf.

Cooperation in organisms, whether bacteria or primates, has been a
difficulty for evolutionary theory since Darwin. On the assumption that interactions
between pairs of individuals occur on a probabilistic basis, a model is developed
based on the concept of an evolutionarily stable strategy in the context of the
Prisoner’s Dilemma game. Deductions from the model, and the results of a computer
tournament show how cooperation based on reciprocity can get started in an asocial
world, can thrive while interacting with a wide range of other strategies, and can resist
invasion once fully established. Potential applications include specific aspects of
territoriality, mating, and disease.

It seems that vectors can help in the path toward symbols for ANNs

Steven T. Piantadosi, Dyana C.Y. Muller, Joshua S. Rule, Karthikeya Kaushik, Mark Gorenstein, Elena R. Leib, Emily Sanford, Why concepts are (probably) vectors, Trends in Cognitive Sciences, Volume 28, Issue 9, 2024, Pages 844-856 DOI: 10.1016/j.tics.2024.06.011.

For decades, cognitive scientists have debated what kind of representation might characterize human concepts. Whatever the format of the representation, it must allow for the computation of varied properties, including similarities, features, categories, definitions, and relations. It must also support the development of theories, ad hoc categories, and knowledge of procedures. Here, we discuss why vector-based representations provide a compelling account that can meet all these needs while being plausibly encoded into neural architectures. This view has become especially promising with recent advances in both large language models and vector symbolic architectures. These innovations show how vectors can handle many properties traditionally thought to be out of reach for neural models, including compositionality, definitions, structures, and symbolic computational processes.

Cognitive evidences of the need of abstraction (==”modularity”) in achieving AI

Schilling, M., Hammer, B., Ohl, F.W. et al. Modularity in Nervous Systems—a Key to Efficient Adaptivity for Deep Reinforcement Learning, Cogn Comput 16, 2358–2373 (2024) DOI: 10.1007/s12559-022-10080-w.

Modularity as observed in biological systems has proven valuable for guiding classical motor theories towards good answers about action selection and execution. New challenges arise when we turn to learning: Trying to scale current computational models, such as deep reinforcement learning (DRL), to action spaces, input dimensions, and time horizons seen in biological systems still faces severe obstacles unless vast amounts of training data are available. This leads to the question: does biological modularity also hold an important key for better answers to obtain efficient adaptivity for deep reinforcement learning? We review biological experimental work on modularity in biological motor control and link this with current examples of (deep) RL approaches. Analyzing outcomes of simulation studies, we show that these approaches benefit from forms of modularization as found in biological systems. We identify three different strands of modularity exhibited in biological control systems. Two of them—modularity in state (i) and in action (ii) spaces—appear as a consequence of local interconnectivity (as in reflexes) and are often modulated by higher levels in a control hierarchy. A third strand arises from chunking of action elements along a (iii) temporal dimension. Usually interacting in an overarching spatio-temporal hierarchy of the overall system, the three strands offer major “factors” decomposing the entire modularity structure. We conclude that modularity with its above strands can provide an effective prior for DRL approaches to speed up learning considerably and making learned controllers more robust and adaptive.

Reducing dimensionality of brain-body state dynamics

Daniel S. Kluger, Micah G. Allen, Joachim Gross, Brain–body states embody complex temporal dynamics, Trends in Cognitive Sciences, Volume 28, Issue 8, 2024, Pages 695-698 DOI: 10.1016/j.tics.2024.05.003.

We propose a computational framework for high-dimensional brain–body states as transient embodiments of nested internal and external dynamics governed by interoception. Unifying recent theoretical work, we suggest ways to reduce arbitrary state complexity to an observable number of features in order to accurately predict and intervene in pathological trajectories.

Setting up goals, even unproductive or unuseful ones, can help in building cognition

Junyi Chu, Joshua B. Tenenbaum, Laura E. Schulz, In praise of folly: flexible goals and human cognition, Trends in Cognitive Sciences, Volume 28, Issue 7, 2024, Pages 628-642 DOI: 10.1016/j.tics.2024.03.006.

Humans often pursue idiosyncratic goals that appear remote from functional ends, including information gain. We suggest that this is valuable because goals (even prima facie foolish or unachievable ones) contain structured information that scaffolds thinking and planning. By evaluating hypotheses and plans with respect to their goals, humans can discover new ideas that go beyond prior knowledge and observable evidence. These hypotheses and plans can be transmitted independently of their original motivations, adapted across generations, and serve as an engine of cultural evolution. Here, we review recent empirical and computational research underlying goal generation and planning and discuss the ways that the flexibility of our motivational system supports cognitive gains for both individuals and societies.

Review of the current methologies for achieving continuous learning, and its biological bases

Buddhi Wickramasinghe, Gobinda Saha , and Kaushik Roy, Continual Learning: A Review of Techniques, Challenges, and Future Directions, IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 5, NO. 6, JUNE 2024 DOI: 10.1109/TAI.2023.3339091.

Continual learning (CL), or the ability to acquire, process, and learn from new information without forgetting acquired knowledge, is a fundamental quality of an intelligent agent. The human brain has evolved into gracefully dealing with ever-changing circumstances and learning from experience with the help of complex neurophysiological mechanisms. Even though artificial intelligence takes after human intelligence, traditional neural networks do not possess the ability to adapt to dynamic environments. When presented with new information, an artificial neural network (ANN) often completely forgets its prior knowledge, a phenomenon called catastrophic forgetting or catastrophic interference. Incorporating CL capabilities into ANNs is an active field of research and is integral to achieving artificial general intelligence. In this review, we revisit CL approaches and critically examine their strengths and limitations. We conclude that CL approaches should look beyond mitigating catastrophic forgetting and strive for systems that can learn, store, recall, and transfer knowledge, much like the human brain. To this end, we highlight the importance of adopting alternative brain-inspired data representations and learning algorithms and provide our perspective on promising new directions where CL could play an instrumental role.

See also: doi: 10.1109/TAI.2024.3355879

Thermodynamics as a way of identifying hierarchies

Morten L. Kringelbach, Yonatan Sanz Perl, Gustavo Deco, The Thermodynamics of Mind, Trends in Cognitive Sciences, Volume 28, Issue 6, 2024, Pages 568-581 DOI: 10.1016/j.tics.2024.03.009.

To not only survive, but also thrive, the brain must efficiently orchestrate distributed computation across space and time. This requires hierarchical organisation facilitating fast information transfer and processing at the lowest possible metabolic cost. Quantifying brain hierarchy is difficult but can be estimated from the asymmetry of information flow. Thermodynamics has successfully characterised hierarchy in many other complex systems. Here, we propose the ‘Thermodynamics of Mind’ framework as a natural way to quantify hierarchical brain orchestration and its underlying mechanisms. This has already provided novel insights into the orchestration of hierarchy in brain states including movie watching, where the hierarchy of the brain is flatter than during rest. Overall, this framework holds great promise for revealing the orchestration of cognition.