Ha-Nguyen Tran, Erik Cambria, Amir Hussain, Towards GPU-Based Common-Sense Reasoning: Using Fast Subgraph Matching, Cognitive Computation, December 2016, Volume 8, Issue 6, pp 1074–1086, DOI: 10.1007/s12559-016-9418-4.
Common-sense reasoning is concerned with simulating cognitive human ability to make presumptions about the type and essence of ordinary situations encountered every day. The most popular way to represent common-sense knowledge is in the form of a semantic graph. Such type of knowledge, however, is known to be rather extensive: the more concepts added in the graph, the harder and slower it becomes to apply standard graph mining techniques.In this work, we propose a new fast subgraph matching approach to overcome these issues. Subgraph matching is the task of finding all matches of a query graph in a large data graph, which is known to be a non-deterministic polynomial time-complete problem. Many algorithms have been previously proposed to solve this problem using central processing units. Here, we present a new graphics processing unit-friendly method for common-sense subgraph matching, termed GpSense, which is designed for scalable massively parallel architectures, to enable next-generation Big Data sentiment analysis and natural language processing applications.We show that GpSense outperforms state-of-the-art algorithms and efficiently answers subgraph queries on large common-sense graphs.