Category Archives: Robot Models

Automatic design of a robot to perform given tasks with an optimal configuration

Sehoon Ha et al., Computational Design of Robotic Devices From High-Level Motion Specifications, IEEE Transactions on Robotics, vol. 34, no. 5, DOI: 10.1109/TRO.2018.2830419.

We present a novel computational approach to design the robotic devices from high-level motion specifications. Our computational system uses a library of modular components—actuators, mounting brackets, and connectors—to define the space of possible robot designs. The process of creating a new robot begins with a set of input trajectories that specify how its end effectors and/or body should move. By searching through the combinatorial set of possible arrangements of modular components, our method generates a functional, as-simple-as-possible robotic device that is capable of tracking the input motion trajectories. To significantly improve the efficiency of this discrete optimization process, we propose a novel heuristic that guides the search for appropriate designs. Briefly, our heuristic function estimates how much an intermediate robot design needs to change before it becomes able to execute the target motion trajectories. We demonstrate the effectiveness of our computational design method by automatically creating a variety of robotic manipulators and legged robots. To generate these results, we define our own robotic kit that includes off-the-shelf actuators and 3-D printable connectors. We validate our results by fabricating two robotic devices designed with our method.

Calibrating a robotic manipulator through photogrammetry, and a nice state-of-the-art in the issue of robot calibration

Alexandre Filion, Ahmed Joubair, Antoine S. Tahan, Ilian A. Bonev, Robot calibration using a portable photogrammetry system, Robotics and Computer-Integrated Manufacturing, Volume 49, 2018, Pages 77-87, DOI: 10.1016/j.rcim.2017.05.004.

This work investigates the potential use of a commercially-available portablephotogrammetry system (the MaxSHOT 3D) in industrial robot calibration. To demonstrate the effectiveness of this system, we take the approach of comparing the device with a laser tracker (the FARO laser tracker) by calibrating an industrial robot, with each device in turn, then comparing the obtained robot position accuracy after calibration. As the use of a portablephotogrammetry system in robot calibration is uncommon, this paper presents how to proceed. It will cover the theory of robot calibration: the robot’s forward and inverse kinematics, the elasto-geometrical model of the robot, the generation and ultimate selection of robot configurations to be measured, and the parameter identification. Furthermore, an experimental comparison of the laser tracker and the MaxSHOT3D is described. The obtained results show that the FARO laser trackerION performs slightly better: The absolute positional accuracy obtained with the laser tracker is 0.365mm and 0.147mm for the maximum and the mean position errors, respectively. Nevertheless, the results obtained by using the MaxSHOT3D are almost as good as those obtained by using the laser tracker: 0.469mm and 0.197mm for the maximum and the mean position errors, respectively. Performances in distance accuracy, after calibration (i.e. maximum errors), are respectively 0.329mm and 0.352mm, for the laser tracker and the MaxSHOT 3D. However, as the validation measurements were acquired with the laser tracker, bias favors this device. Thus, we may conclude that the calibration performances of the two measurement devices are very similar.

Building probabilistic models of physical processes from their deterministic models and some experimental data, with guarantees on the degree of coincidence between the generated model and the real system

Konstantinos Karydis, Ioannis Poulakakis, Jianxin Sun, and Herbert G. Tanner, Probabilistically valid stochastic extensions of deterministic models for systems with uncertainty, The International Journal of Robotics Research September 2015 34: 1278-1295, first published on May 28, 2015. DOI: 10.1177/0278364915576336.

Models capable of capturing and reproducing the variability observed in experimental trials can be valuable for planning and control in the presence of uncertainty. This paper reports on a new data-driven methodology that extends deterministic models to a stochastic regime and offers probabilistic guarantees of model fidelity. From an acceptable deterministic model, a stochastic one is generated, capable of capturing and reproducing uncertain system–environment interactions at given levels of fidelity. The reported approach combines methodological elements from probabilistic model validation and randomized algorithms, to simultaneously quantify the fidelity of a model and tune the distribution of random parameters in the corresponding stochastic extension, in order to reproduce the variability observed experimentally in the physical process of interest. The approach can be applied to an array of physical processes, the models of which may come in different forms, including differential equations; we demonstrate this point by considering examples from the areas of miniature legged robots and aerial vehicles.

A nice review of the problem of kinematic modeling of wheeled mobile robots and a new approach that delays the use of coordinate frames

Alonzo Kelly and Neal Seegmiller, 2015, Recursive kinematic propagation for wheeled mobile robots, The International Journal of Robotics Research, 34: 288-313, DOI: 10.1177/0278364914551773.

The problem of wheeled mobile robot kinematics is formulated using the transport theorem of vector algebra. Doing so postpones the introduction of coordinates until after the expressions for the relevant Jacobians have been derived. This approach simplifies the derivation while also providing the solution to the general case in 3D, including motion over rolling terrain. Angular velocity remains explicit rather than encoded as the time derivative of a rotation matrix. The equations are derived and can be implemented recursively using a single equation that applies to all cases. Acceleration kinematics are uniquely derivable in reasonable effort. The recursive formulation also leads to efficient computer implementations that reflect the modularity of real mechanisms.