Category Archives: Systems And Signals

Detection of qualitative behaviours in signals

Ying Tang, Alessio Franci, Romain Postoyan, On-line detection of qualitative dynamical changes in nonlinear systems: The resting-oscillation case, Automatica, Volume 100, 2019, Pages 17-28, DOI: 10.1016/j.automatica.2018.10.058.

Motivated by neuroscience applications, we introduce the concept of qualitative detection, that is, the problem of determining on-line the current qualitative dynamical behavior (e.g., resting, oscillating, bursting, spiking etc.) of a nonlinear system. The approach is thought for systems characterized by i) large parameter variability and redundancy, ii) a small number of possible robust, qualitatively different dynamical behaviors and, iii) the presence of sharply different characteristic timescales. These properties are omnipresent in neurosciences and hamper quantitative modeling and fitting of experimental data. As a result, novel control theoretical strategies are needed to face neuroscience challenges like on-line epileptic seizure detection. The proposed approach aims at detecting the current dynamical behavior of the system and whether a qualitative change is likely to occur without quantitatively fitting any model nor asymptotically estimating any parameter. We talk of qualitative detection. We rely on the qualitative properties of the system dynamics, extracted via singularity and singular perturbation theories, to design low dimensional qualitative detectors. We introduce this concept on a general class of singularly perturbed systems and then solve the problem for an analytically tractable class of two-dimensional systems with a single unknown sigmoidal nonlinearity and two sharply separated timescales. Numerical results are provided to show the performance of the designed qualitative detector.

SLAM as a sampling problem, with some references to the signal sampling state-of-the-art

Golnoosh Elhami, et. al Sampling at Unknown Locations: Uniqueness and Reconstruction Under Constraints, IEEE Transactions on Signal Processing, Vol 66 no. 22, DOI: 10.1109/TSP.2018.2872019.

Traditional sampling results assume that the sample locations are known. Motivated by simultaneous localization and mapping (SLAM) and structure from motion (SfM), we investigate sampling at unknown locations. Without further constraints, the problem is often hopeless. For example, we recently showed that, for polynomial and bandlimited signals, it is possible to find two signals, arbitrarily far from each other, that fit the measurements. However, we also showed that this can be overcome by adding constraints to the sample positions. In this paper, we show that these constraints lead to a uniform sampling of a composite of functions. Furthermore, the formulation retains the key aspects of the SLAM and SfM problems, whilst providing uniqueness, in many cases. We demonstrate this by studying two simple examples of constrained sampling at unknown locations. In the first, we consider sampling a periodic bandlimited signal composite with an unknown linear function. We derive the sampling requirements for uniqueness and present an algorithm that recovers both the bandlimited signal and the linear warping. Furthermore, we prove that, when the requirements for uniqueness are not met, the cases of multiple solutions have measure zero. For our second example, we consider polynomials sampled such that the sampling positions are constrained by a rational function. We previously proved that, if a specific sampling requirement is met, uniqueness is achieved. In addition, we present an alternate minimization scheme for solving the resulting non-convex optimization problem. Finally, fully reproducible simulation results are provided to support our theoretical analysis.