Ben Yang, Boyi Chen, Yanbin Liu, Jinbao Chen, Gaussian process fusion method for multi-fidelity data with heterogeneity distribution in aerospace vehicle flight dynamics, Engineering Applications of Artificial Intelligence, Volume 138, Part A, 2024, DOI: 10.1016/j.engappai.2024.109228.
In the engineering design of aerospace vehicles, design data at different stages exhibit hierarchical and heterogeneous distribution characteristics. Specifically, high-fidelity design data (such as from computational fluid dynamics simulations and flight tests) are costly and time-consuming to obtain. Moreover, the limited high-precision samples that are acquired often fail to cover the entire design space, resulting in a distribution characterized by small sample sizes. A critical challenge in data-driven modeling is efficiently fusing low-fidelity data with limited heterogeneous high-fidelity data to improve model accuracy and predictive performance. In response to this challenge, this paper introduces a Gaussian process fusion method for multi-fidelity data, founded on distribution characteristics. Multi-fidelity data are represented as intermediate surrogates using Gaussian processes, identifying heteroscedastic noise properties and deriving posterior distributions. The fusion is then treated as an optimization problem for prediction variance, using K-nearest neighbors and spatial clustering to determine optimal weights, which are adaptively adjusted based on sample density. These weights are adaptively adjusted based on the sample density to strengthen the local modeling behavior. The paper concludes with a comparative analysis, evaluating the proposed method against other conventional approaches using numerical cases and an aerodynamic prediction scenario for aerospace vehicles. A comparative analysis shows that the proposed method improves global modeling accuracy by 45% and reduces the demand for high-fidelity samples by over 40% compared to traditional methods. Applied in aerospace design, the method effectively merges multi-source data, establishing a robust hypersonic aerodynamic database while controlling modeling costs and demonstrating robustness to sample distribution.