Monthly Archives: July 2024

You are browsing the site archives by month.

RL to learn the coordination of different goals in autonomous driving

J. Liu, J. Yin, Z. Jiang, Q. Liang and H. Li, Attention-Based Distributional Reinforcement Learning for Safe and Efficient Autonomous Driving, IEEE Robotics and Automation Letters, vol. 9, no. 9, pp. 7477-7484, Sept. 2024 DOI: 10.1109/LRA.2024.3427551.

Autonomous driving vehicles play a critical role in intelligent transportation systems and have garnered considerable attention. Currently, the popular approach in autonomous driving systems is to design separate optimal objectives for each independent module. Therefore, a major concern arises from the fact that these diverse optimal objectives may have an impact on the final driving policy. However, reinforcement learning provides a promising solution to tackle the challenge through joint training and its exploration ability. This letter aims to develop a safe and efficient reinforcement learning approach with advanced features for autonomous navigation in urban traffic scenarios. Firstly, we develop a novel distributional reinforcement learning method that integrates an implicit distribution model into an actor-critic framework. Subsequently, we introduce a spatial attention module to capture interaction features between the ego vehicle and other traffic vehicles, and design a temporal attention module to extract the long-term sequential feature. Finally, we utilize bird’s-eye-view as a context-aware representation of traffic scenarios, fused by the above spatio-temporal features. To validate our approach, we conduct experiments on the NoCrash and CoRL benchmarks, especially on our closed-loop openDD scenarios. The experimental results demonstrate the impressive performance of our approach in terms of convergence and stability compared to the baselines.

RL in periodic scenarios

A. Aniket and A. Chattopadhyay, Online Reinforcement Learning in Periodic MDP, IEEE Transactions on Artificial Intelligence, vol. 5, no. 7, pp. 3624-3637, July 2024 DOI: 10.1109/TAI.2024.3375258.

We study learning in periodic Markov decision process (MDP), a special type of nonstationary MDP where both the state transition probabilities and reward functions vary periodically, under the average reward maximization setting. We formulate the problem as a stationary MDP by augmenting the state space with the period index and propose a periodic upper confidence bound reinforcement learning-2 (PUCRL2) algorithm. We show that the regret of PUCRL2 varies linearly with the period N and as O(TlogT−−−−−√) with the horizon length T . Utilizing the information about the sparsity of transition matrix of augmented MDP, we propose another algorithm [periodic upper confidence reinforcement learning with Bernstein bounds (PUCRLB) which enhances upon PUCRL2, both in terms of regret ( O(N−−√) dependency on period] and empirical performance. Finally, we propose two other algorithms U-PUCRL2 and U-PUCRLB for extended uncertainty in the environment in which the period is unknown but a set of candidate periods are known. Numerical results demonstrate the efficacy of all the algorithms.

Making RL safer by first learning what is a safe situation

K. Fan, Z. Chen, G. Ferrigno and E. D. Momi, Learn From Safe Experience: Safe Reinforcement Learning for Task Automation of Surgical Robot, IEEE Transactions on Artificial Intelligence, vol. 5, no. 7, pp. 3374-3383, July 2024 DOI: 10.1109/TAI.2024.3351797.

Surgical task automation in robotics can improve the outcomes, reduce quality-of-care variance among surgeons and relieve surgeons’ fatigue. Reinforcement learning (RL) methods have shown considerable performance in robot autonomous control in complex environments. However, the existing RL algorithms for surgical robots do not consider any safety requirements, which is unacceptable in automating surgical tasks. In this work, we propose an approach called safe experience reshaping (SER) that can be integrated into any offline RL algorithm. First, the method identifies and learns the geometry of constraints. Second, a safe experience is obtained by projecting an unsafe action to the tangent space of the learned geometry, which means that the action is in the safe space. Then, the collected safe experiences are used for safe policy training. We designed three tasks that closely resemble real surgical tasks including 2-D cutting tasks and a contact-rich debridement task in 3-D space to evaluate the safe RL framework. We compare our framework to five state-of-the-art (SOTA) RL methods including reward penalty and primal-dual methods. Results show that our framework gets a lower rate of constraint violations and better performance in task success, especially with a higher convergence speed.

A new software design, verification and implementation method for robotics

Li, W., Ribeiro, P., Miyazawa, A. et al., Formal design, verification and implementation of robotic controller software via RoboChart and RoboTool, Auton Robot 48, 14 (2024) DOI: 10.1007/s10514-024-10163-7.

Current practice in simulation and implementation of robot controllers is usually undertaken with guidance from high-level design diagrams and pseudocode. Thus, no rigorous connection between the design and the development of a robot controller is established. This paper presents a framework for designing robotic controllers with support for automatic generation of executable code and automatic property checking. A state-machine based notation, RoboChart, and a tool (RoboTool) that implements the automatic generation of code and mathematical models from the designed controllers are presented. We demonstrate the application of RoboChart and its related tool through a case study of a robot performing an exploration task. The automatically generated code is platform independent and is used in both simulation and two different physical robotic platforms. Properties are formally checked against the mathematical models generated by RoboTool, and further validated in the actual simulations and physical experiments. The tool not only provides engineers with a way of designing robotic controllers formally but also paves the way for correct implementation of robotic systems.

Setting up goals, even unproductive or unuseful ones, can help in building cognition

Junyi Chu, Joshua B. Tenenbaum, Laura E. Schulz, In praise of folly: flexible goals and human cognition, Trends in Cognitive Sciences, Volume 28, Issue 7, 2024, Pages 628-642 DOI: 10.1016/j.tics.2024.03.006.

Humans often pursue idiosyncratic goals that appear remote from functional ends, including information gain. We suggest that this is valuable because goals (even prima facie foolish or unachievable ones) contain structured information that scaffolds thinking and planning. By evaluating hypotheses and plans with respect to their goals, humans can discover new ideas that go beyond prior knowledge and observable evidence. These hypotheses and plans can be transmitted independently of their original motivations, adapted across generations, and serve as an engine of cultural evolution. Here, we review recent empirical and computational research underlying goal generation and planning and discuss the ways that the flexibility of our motivational system supports cognitive gains for both individuals and societies.