Tag Archives: Prediction In Cognition

Do we prefer that our predictions fit observations -to validate our expectations- or that they surprise us -to acquire new knowledge-?

Clare Press, Peter Kok, Daniel Yon, The Perceptual Prediction Paradox, Trends in Cognitive Sciences, Volume 24, Issue 1, January 2020, Pages 4-6, DOI: 10.1016/j.tics.2019.11.003.

From the noisy information bombarding our senses, our brains must construct percepts that are veridical – reflecting the true state of the world – and informative – conveying what we did not already know. Influential theories suggest that both challenges are met through mechanisms that use expectations about the likely state of the world to shape perception. However, current models explaining how expectations render perception either veridical or informative are mutually incompatible. While the former propose that perceptual experiences are dominated by events we expect, the latter propose that perception of expected events is suppressed. To solve this paradox we propose a two-process model in which probabilistic knowledge initially biases perception towards what is likely and subsequently upweights events that are particularly surprising.

On the role and limitations of motor internal simulation as a way of predicting the effects of a future action in the brain

Myrthel Dogge, Ruud Custers, Henk Aarts, Moving Forward: On the Limits of Motor-Based Forward Models. Trends in Cognitive Sciences, Volume 23, Issue 9, 2019, Pages 743-753, DOI: 10.1016/j.tics.2019.06.008.

The human ability to anticipate the consequences that result from action is an essential building block for cognitive, emotional, and social functioning. A dominant view is that this faculty is based on motor predictions, in which a forward model uses a copy of the motor command to predict imminent sensory action-consequences. Although this account was originally conceived to explain the processing of action-outcomes that are tightly coupled to bodily movements, it has been increasingly extrapolated to effects beyond the body. Here, we critically evaluate this generalization and argue that, although there is ample evidence for the role of predictions in the processing of environment-related action-outcomes, there is hitherto little reason to assume that these predictions result from motor-based forward models.

A developmental architecture for sensory-motor skills based on predictors, and a nice state-of-the-art in cognitive architectures for sensory-motor skill learning

E. Wieser and G. Cheng, A Self-Verifying Cognitive Architecture for Robust Bootstrapping of Sensory-Motor Skills via Multipurpose Predictors, IEEE Transactions on Cognitive and Developmental Systems, vol. 10, no. 4, pp. 1081-1095, DOI: 10.1109/TCDS.2018.2871857.

The autonomous acquisition of sensory-motor skills along multiple developmental stages is one of the current challenges in robotics. To this end, we propose a new developmental cognitive architecture that combines multipurpose predictors and principles of self-verification for the robust bootstrapping of sensory-motor skills. Our architecture operates with loops formed by both mental simulation of sensory-motor sequences and their subsequent physical trial on a robot. During these loops, verification algorithms monitor the predicted and the physically observed sensory-motor data. Multiple types of predictors are acquired through several developmental stages. As a result, the architecture can select and plan actions, adapt to various robot platforms by adjusting proprioceptive feedback, predict the risk of self-collision, learn from a previous interaction stage by validating and extracting sensory-motor data for training the predictor of a subsequent stage, and finally acquire an internal representation for evaluating the performance of its predictors. These cognitive capabilities in turn realize the bootstrapping of early hand-eye coordination and its improvement. We validate the cognitive capabilities experimentally and, in particular, show an improvement of reaching as an example skill.