Tag Archives: Concept Learning

On how psychologists realize that the brain, after all, may be creating symbols (concepts), like deep neural networks show

Jeffrey S. Bowers, Parallel Distributed Processing Theory in the Age of Deep Networks, Trends in Cognitive Sciences, Volume 21, Issue 12, 2017, Pages 950-961, DOI: 10.1016/j.tics.2017.09.013.

Parallel distributed processing (PDP) models in psychology are the precursors of deep networks used in computer science. However, only PDP models are associated with two core psychological claims, namely that all knowledge is coded in a distributed format and cognition is mediated by non-symbolic computations. These claims have long been debated in cognitive science, and recent work with deep networks speaks to this debate. Specifically, single-unit recordings show that deep networks learn units that respond selectively to meaningful categories, and researchers are finding that deep networks need to be supplemented with symbolic systems to perform some tasks. Given the close links between PDP and deep networks, it is surprising that research with deep networks is challenging PDP theory.

Learning concepts from graphs in robotics, through first-order logic and discovery of subgraphs, forming arbitrary hierarchies

Ana C. Tenorio-González, Eduardo F. Morales, Automatic discovery of relational concepts by an incremental graph-based representation, Robotics and Autonomous Systems, Volume 83, 2016, Pages 1-14, ISSN 0921-8890, DOI: 10.1016/j.robot.2016.06.012.

Automatic discovery of concepts has been an elusive area in machine learning. In this paper, we describe a system, called ADC, that automatically discovers concepts in a robotics domain, performing predicate invention. Unlike traditional approaches of concept discovery, our approach automatically finds and collects instances of potential relational concepts. An agent, using ADC, creates an incremental graph-based representation with the information it gathers while exploring its environment, from which common sub-graphs are identified. The subgraphs discovered are instances of potential relational concepts which are induced with Inductive Logic Programming and predicate invention. Several concepts can be induced concurrently and the learned concepts can form arbitrarily hierarchies. The approach was tested for learning concepts of polygons, furniture, and floors of buildings with a simulated robot and compared with concepts suggested by users.