Tag Archives: Numbers In The Brain

Emergence of number meaning from sensorimotor experiences

Elena Sixtus, Florian Krause, Oliver Lindemann, Martin H. Fischer, A sensorimotor perspective on numerical cognition, Trends in Cognitive Sciences, Volume 27, Issue 4, 2023, Pages 367-378 DOI: 10.1016/j.tics.2023.01.002.

Numbers are present in every part of modern society and the human capacity to use numbers is unparalleled in other species. Understanding the mental and neural representations supporting this capacity is of central interest to cognitive psychology, neuroscience, and education. Embodied numerical cognition theory suggests that beyond the seemingly abstract symbols used to refer to numbers, their underlying meaning is deeply grounded in sensorimotor experiences, and that our specific understanding of numerical information is shaped by actions related to our fingers, egocentric space, and experiences with magnitudes in everyday life. We propose a sensorimotor perspective on numerical cognition in which number comprehension and numerical proficiency emerge from grounding three distinct numerical core concepts: magnitude, ordinality, and cardinality.

The Evolutionary History of Brains for Numbers

Andreas Nieder, The Evolutionary History of Brains for Numbers, . Trends in Cognitive Sciences, Volume 25, Issue 7, 2021, Pages 608-621 DOI: 10.1016/j.tics.2021.03.012.

Humans and other animals share a number sense’, an intuitive understanding of countable quantities. Having evolved independent from one another for hundreds of millions of years, the brains of these diverse species, including monkeys, crows, zebrafishes, bees, and squids, differ radically. However, in all vertebrates investigated, the pallium of the telencephalon has been implicated in number processing. This suggests that properties of the telencephalon make it ideally suited to host number representations that evolved by convergent evolution as a result of common selection pressures. In addition, promising candidate regions in the brains of invertebrates, such as insects, spiders, and cephalopods, can be identified, opening the possibility of even deeper commonalities for number sense.

On the integer numbers in the brain

Susan Carey, David Barner, Ontogenetic Origins of Human Integer Representations. Trends in Cognitive Sciences, Volume 23, Issue 10, 2019, Pages 823-835, DOI: 10.1016/j.tics.2019.07.004.

Do children learn number words by associating them with perceptual magnitudes? Recent studies argue that approximate numerical magnitudes play a foundational role in the development of integer concepts. Against this, we argue that approximate number representations fail both empirically and in principle to provide the content required of integer concepts. Instead, we suggest that children\u2019s understanding of integer concepts proceeds in two phases. In the first phase, children learn small exact number word meanings by associating words with small sets. In the second phase, children learn the meanings of larger number words by mastering the logic of exact counting algorithms, which implement the successor function and Hume\u2019s principle (that one-to-one correspondence guarantees exact equality). In neither phase do approximate number representations play a foundational role.

Numerosity in animals (insects)

Martin Giurfa, An Insect\u2019s Sense of Number. Trends in Cognitive Sciences, Volume 23, Issue 9, 2019, Pages 720-722, DOI: 10.1016/j.tics.2019.06.010.

Recent studies revealed numerosity judgments in bees, which include the concept of zero, subtraction and addition, and matching symbols to numbers. Despite their distant origins, bees and vertebrates share similarities in their numeric competences, thus suggesting that numerosity is evolutionary conserved and can be implemented in miniature brains without neocortex.

On numerical cognition and the inexistence of an innate concept of number but the existence of an innate concept of quantity

Tom Verguts, Qi Chen, Numerical Cognition: Learning Binds Biology to Culture, Trends in Cognitive Sciences, Volume 21, Issue 12, 2017, Pages 913-914, DOI: 10.1016/j.tics.2017.09.004.

First, we address the issue of which quantity representations are innate. Second, we consider the role of the number list, whose characteristics are no doubt highly culturally dependent.

Evidences that the human brain has quantifying properties -i.e., ability to discriminate between sets of different sizes- as a result of evolution, but that numerical cognition is a result of culture

Rafael E. Núñez, Is There Really an Evolved Capacity for Number?, Trends in Cognitive Sciences, Volume 21, Issue 6, June 2017, Pages 409-424, ISSN 1364-6613, DOI: 10.1016/j.tics.2017.03.005.

Humans and other species have biologically endowed abilities for discriminating quantities. A widely accepted view sees such abilities as an evolved capacity specific for number and arithmetic. This view, however, is based on an implicit teleological rationale, builds on inaccurate conceptions of biological evolution, downplays human data from non-industrialized cultures, overinterprets results from trained animals, and is enabled by loose terminology that facilitates teleological argumentation. A distinction between quantical (e.g., quantity discrimination) and numerical (exact, symbolic) cognition is needed: quantical cognition provides biologically evolved preconditions for numerical cognition but it does not scale up to number and arithmetic, which require cultural mediation. The argument has implications for debates about the origins of other special capacities – geometry, music, art, and language.

Evidences that the brain encodes numbers on an internal continous line and that the zero value is also represented

Luca Rinaldi, Luisa Girelli, A Place for Zero in the Brain, Trends in Cognitive Sciences, Volume 20, Issue 8, 2016, Pages 563-564, ISSN 1364-6613, DOI: 10.1016/j.tics.2016.06.006.

It has long been thought that the primary cognitive and neural systems responsible for processing numerosities are not predisposed to encode empty sets (i.e., numerosity zero). A new study challenges this view by demonstrating that zero is translated into an abstract quantity along the numerical continuum by the primate parietofrontal magnitude system.