Monthly Archives: December 2024

You are browsing the site archives by month.

On the limited throughput of the human cognition and its implications, e.g., in Engineering

Jieyu Zheng1, and Markus Meister, The unbearable slowness of being: Why do we live at 10 bits/s?, Neuron (2024), DOI: 10.1016/j.neuron.2024.11.008.

This article is about the neural conundrum behind the slowness of human behavior. The information throughput of a human being is about 10 bits/s. In comparison, our sensory systems gather data at 10 bits/s. The stark contrast between these numbers remains unexplained and touches on fundamental aspects of brain function: what neural substrate sets this speed limit on the pace of our existence? Why does the brain need billions of neurons to process 10 bits/s? Why can we only think about one thing at a time? The brain seems to operate in two distinct modes: the ‘‘outer’’ brain handles fast high-dimensional sensory and motor signals, whereas the ‘‘inner’’ brain processes the reduced few bits needed to control behavior. Plausible explanations exist for the large neuron numbers in the outer brain, but not for the inner brain, and we propose new research directions to remedy this.

Survey and benchmarking of open-source, low-cost LLMs for generating program code

Jessica López Espejel, Mahaman Sanoussi Yahaya Alassan, Merieme Bouhandi, Walid Dahhane, El Hassane Ettifouri, Low-cost language models: Survey and performance evaluation on Python code generation, Engineering Applications of Artificial Intelligence, Volume 140, 2025, DOI: 10.1016/j.engappai.2024.109490.

Large Language Models (LLMs) have become a popular choice for many Natural Language Processing (NLP) tasks due to their versatility and ability to produce high-quality results. Specifically, they are increasingly used for automatic code generation to help developers tackle repetitive coding tasks. However, LLMs’ substantial computational and memory requirements often make them inaccessible to users with limited resources. This paper focuses on very low-cost models which offer a more accessible alternative to resource-intensive LLMs. We notably: (1) propose a thorough semi-manual evaluation of their performance in generating Python code, (2) introduce a Chain-of-Thought (CoT) prompting strategy to improve model reasoning and code quality, and (3) propose a new dataset of 60 programming problems, with varied difficulty levels, designed to extend existing benchmarks like HumanEval and EvalPlus. Our findings show that some low-cost compatible models achieve competitive results compared to larger models like ChatGPT despite using significantly fewer resources. We will make our dataset and prompts publicly available to support further research.

A novel safety-critical robotic architecture

Manuel Schrick, Johannes Hinckeldeyn, Marko Thiel, Jochen Kreutzfeldt, A microservice based control architecture for mobile robots in safety-critical applications, Robotics and Autonomous Systems, Volume 183, 2025, DOI: 10.1016/j.robot.2024.104795.

Mobile robots have become more and more common in public space. This increases the importance of meeting safety requirements of autonomous robots. Simple mechanisms, such as emergency braking, alone do not suffice in these highly dynamic situations. Moreover, actual robotic control approaches in literature and practice do not take safety particularly into account. A more sophisticated situational approach for assessment and planning is needed as part of the high-level process control. This paper presents the concept of a safety-critical Robot Control Architecture for mobile robots based on microservices and a Hierarchical Finite State Machine. It expands already existing architectures by drastically reducing the amount of centralized logic and thus increasing the overall system’s level of concurrency, interruptibility and fail-safety. Furthermore, it introduces new potential for code reuse that allows for straightforward implementation of safety mechanisms such as internal diagnostics systems. In doing so, this concept presents the template of a new type of state machine implementation. It is demonstrated with the application of a delivery robot, which was implemented and operated in real public during a broader research project.

Survey on robotics navigation, particularly using RL and other approaches for self-learning that task

Suaib Al Mahmud, Abdurrahman Kamarulariffin, Azhar Mohd Ibrahim, Ahmad Jazlan Haja Mohideen, Advancements and Challenges in Mobile Robot Navigation: A Comprehensive Review of Algorithms and Potential for Self‐Learning Approaches, Journal of Intelligent & Robotic Systems (2024) 110:120, DOI: 10.1007/s10846-024-02149-5.

Mobile robot navigation has been a very popular topic of practice among researchers since a while. With the goal of enhancing the autonomy in mobile robot navigation, numerous algorithms (traditional AI-based, swarm intelligence-based, self-learning-based) have been built and implemented independently, and also in blended manners. Nevertheless, the problem of efficient autonomous robot navigation persists in multiple degrees due to the limitation of these algorithms. The lack of knowledge on the implemented techniques and their shortcomings act as a hindrance to further development on this topic. This is why an extensive study on the previously implemented algorithms, their applicability, their weaknesses as well as
their potential needs to be conducted in order to assess how to improve mobile robot navigation performance. In this review paper, a comprehensive review of mobile robot navigation algorithms has been conducted. The findings suggest that, even though the self-learning algorithms require huge amounts of training data and have the possibility of learning erroneous behavior, they possess huge potential to overcome challenges rarely addressed by the other traditional algorithms. The findings also insinuate that in the domain of machine learning-based algorithms, integration of knowledge representation with a neuro-symbolic approach has the capacity to improve the accuracy and performance of self-robot navigation training by a significant margin.