Category Archives: Robot Motion Planning

A related work with a nice taxonomy of robot navigation algorithms

Eduardo J. Molinos, Ángel Llamazares, Manuel Ocaña Dynamic window based approaches for avoiding obstacles in moving, Robotics and Autonomous Systems,
Volume 118, 2019, Pages 112-130 DOI: 10.1016/j.robot.2019.05.003.

In recent years, Unmanned Ground Vehicles (UGVs) have been widely used as service robots. Unlike industrial robots, which are situated in fixed and controlled positions, UGVs work in dynamic environments, sharing the environment with other vehicles and humans. These robots should be able to move without colliding with any obstacle, assuring its integrity and the environment safety. In this paper, we propose two adaptations of the classical Dynamic Window algorithm for dealing with dynamic obstacles like Dynamic Window for Dynamic Obstacles (DW4DO) and Dynamic Window for Dynamic Obstacles Tree (DW4DOT). These new algorithms are compared with our previous algorithms based on Curvature Velocity Methods: Predicted Curvature Velocity Method (PCVM) and Dynamic Curvature Velocity Method (DCVM). Proposals have been validated in both simulated and real environment using several robotic platforms.

A novel path planning method for both global and local planning with provable behavior, and a nice survey of existing navigation methods

Sgorbissa, A., Integrated robot planning, path following, and obstacle avoidance in two and three dimensions: wheeled robots, underwater vehicles, and multicopters, The International Journal of Robotics Research, DOI: 10.1177/0278364919846910.

We propose an innovative, integrated solution to path planning, path following, and obstacle avoidance that is suitable both for 2D and 3D navigation. The proposed method takes as input a generic curve connecting a start and a goal position, and is able to find a corresponding path from start to goal in a maze-like environment even in the absence of global information, it guarantees convergence to the path with kinematic control, and finally avoids locally sensed obstacles without becoming trapped in deadlocks. This is achieved by computing a closed-form expression in which the control variables are a continuous function of the input curve, the robot’s state, and the distance of all the locally sensed obstacles. Specifically, we introduce a novel formalism for describing the path in two and three dimensions, as well as a computationally efficient method for path deformation (based only on local sensor readings) that is able to find a path to the goal even when such path cannot be produced through continuous deformations of the original. The article provides formal proofs of all the properties above, as well as simulated results in a simulated environment with a wheeled robot, an underwater vehicle, and a multicopter.

Improving on-line Monte Carlo POMDP (DESTOP in particular) in discrete spaces through the use of importance sampling, and a nice summary of the problem and of current on-line POMDP approaches

Luo, Y., Bai, H., Hsu, D., & Lee, W. S., Importance sampling for online planning under uncertainty, The International Journal of Robotics Research, 38(2–3), 162–181, 2019 DOI: 10.1177/0278364918780322.

The partially observable Markov decision process (POMDP) provides a principled general framework for robot planning under uncertainty. Leveraging the idea of Monte Carlo sampling, recent POMDP planning algorithms have scaled up to various challenging robotic tasks, including, real-time online planning for autonomous vehicles. To further improve online planning performance, this paper presents IS-DESPOT, which introduces importance sampling to DESPOT, a state-of-the-art sampling-based POMDP algorithm for planning under uncertainty. Importance sampling improves DESPOT’s performance when there are critical, but rare events, which are difficult to sample. We prove that IS-DESPOT retains the theoretical guarantee of DESPOT. We demonstrate empirically that importance sampling significantly improves the performance of online POMDP planning for suitable tasks. We also present a general method for learning the importance sampling distribution.

RL and Inverse RL based on MDPs for autonomous vehicles, and a nice historical review of the topic of a.v.

Changxi You, Jianbo Lu, Dimitar Filev, Panagiotis Tsiotras, Advanced planning for autonomous vehicles using reinforcement learning and deep inverse reinforcement learning, Robotics and Autonomous Systems, Volume 114, 2019, Pages 1-18 DOI: 10.1016/j.robot.2019.01.003.

Autonomous vehicles promise to improve traffic safety while, at the same time, increase fuel efficiency and reduce congestion. They represent the main trend in future intelligent transportation systems. This paper concentrates on the planning problem of autonomous vehicles in traffic. We model the interaction between the autonomous vehicle and the environment as a stochastic Markov decision process (MDP) and consider the driving style of an expert driver as the target to be learned. The road geometry is taken into consideration in the MDP model in order to incorporate more diverse driving styles. The desired, expert-like driving behavior of the autonomous vehicle is obtained as follows: First, we design the reward function of the corresponding MDP and determine the optimal driving strategy for the autonomous vehicle using reinforcement learning techniques. Second, we collect a number of demonstrations from an expert driver and learn the optimal driving strategy based on data using inverse reinforcement learning. The unknown reward function of the expert driver is approximated using a deep neural-network (DNN). We clarify and validate the application of the maximum entropy principle (MEP) to learn the DNN reward function, and provide the necessary derivations for using the maximum entropy principle to learn a parameterized feature (reward) function. Simulated results demonstrate the desired driving behaviors of an autonomous vehicle using both the reinforcement learning and inverse reinforcement learning techniques.

An application of MDPs to UAV collision-free navigation with an interesting taxonomy of the state-of-the-art

Xiang Yu1, Xiaobin Zhou2, Youmin Zhang, Collision-Free Trajectory Generation and Tracking for UAVs Using Markov Decision Process in a Cluttered Environment, Journal of Intelligent & Robotic Systems, 2019, 93:17–32 DOI: 10.1007/s10846-018-0802-z.

A collision-free trajectory generation and tracking method capable of re-planning unmanned aerial vehicle (UAV) trajectories can increase flight safety and decrease the possibility of mission failures. In this paper, a Markov decision process (MDP) based algorithm combined with backtracking method is presented to create a safe trajectory in the case of hostile environments. Subsequently, a differential flatness method is adopted to smooth the profile of the rerouted trajectory for satisfying the UAV physical constraints. Lastly, a flight controller based on passivity-based control (PBC) is designed to maintain UAV’s stability and trajectory tracking performance. simulation results demonstrate that the UAV with the proposed strategy is capable of avoiding obstacles in a hostile environment.

A novel paradigm for motion planning based on probabilistic inference

Mukadam, M., Dong, J., Yan, X., Dellaert, F., & Boots, B. , Continuous-time Gaussian process motion planning via probabilistic inference, The International Journal of Robotics Research, 37(11), 1319–1340, DOI: 10.1177/0278364918790369.

We introduce a novel formulation of motion planning, for continuous-time trajectories, as probabilistic inference. We first show how smooth continuous-time trajectories can be represented by a small number of states using sparse Gaussian process (GP) models. We next develop an efficient gradient-based optimization algorithm that exploits this sparsity and GP interpolation. We call this algorithm the Gaussian Process Motion Planner (GPMP). We then detail how motion planning problems can be formulated as probabilistic inference on a factor graph. This forms the basis for GPMP2, a very efficient algorithm that combines GP representations of trajectories with fast, structure-exploiting inference via numerical optimization. Finally, we extend GPMP2 to an incremental algorithm, iGPMP2, that can efficiently replan when conditions change. We benchmark our algorithms against several sampling-based and trajectory optimization-based motion planning algorithms on planning problems in multiple environments. Our evaluation reveals that GPMP2 is several times faster than previous algorithms while retaining robustness. We also benchmark iGPMP2 on replanning problems, and show that it can find successful solutions in a fraction of the time required by GPMP2 to replan from scratch.

On the need to replanning in POMDPs when applied to real systems, due to imperfect sensing and computational cost of online planning

Ali-akbar Agha-mohammadi et al., SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in Belief Space, IEEE Transactions on Robotics, vol. 34, no. 5, DOI: 10.1109/TRO.2018.2838556.

Simultaneous localization and planning (SLAP) is a crucial ability for an autonomous robot operating under uncertainty. In its most general form, SLAP induces a continuous partially observable Markov decision process (POMDP), which needs to be repeatedly solved online. This paper addresses this problem and proposes a dynamic replanning scheme in belief space. The underlying POMDP, which is continuous in state, action, and observation space, is approximated offline via sampling-based methods, but operates in a replanning loop online to admit local improvements to the coarse offline policy. This construct enables the proposed method to combat changing environments and large localization errors, even when the change alters the homotopy class of the optimal trajectory. It further outperforms the state-of-the-art Feedback-based Information RoadMap (FIRM) method by eliminating unnecessary stabilization steps. Applying belief space planning to physical systems brings with it a plethora of challenges. A key focus of this paper is to implement the proposed planner on a physical robot and show the SLAP solution performance under uncertainty, in changing environments and in the presence of large disturbances, such as a kidnapped robot situation.

A performance metric for evaluating and comparing robot navigation algorithms

Yazhini Chitra Pradeep, Kendrick Amezquita-Semprun, Manuel Del Rosario, Peter C.Y. Chen, The Pc metric: A performance measure for collision avoidance algorithms, Robotics and Autonomous Systems, Volume 109, 2018, Pages 125-138, DOI: 10.1016/j.robot.2018.08.005.

Despite the comprehensive development in the field of navigation algorithms for mobile robots, the research on performance metrics and evaluation procedures for making standardized quantitative comparison between different algorithms has gained attention only recently. This work attempts to contribute with such effort by introducing a performance metric for the assessment of collision avoidance algorithms for mobile robots. The proposed metric comprehensively evaluates the actions taken by the objects and their consequences, in a given scenario of any given collision avoidance algorithm, based on the concept of probability of collision. The contribution of the paper encompasses the definition of the metric, the methodology to estimate the metric, and the framework to apply the metric for any given scenario. Experiments and numerical simulations are conducted to validate and demonstrate the effectiveness of the proposed metric in performance evaluation and comparison among different collision avoidance algorithms.

Using reasoning to improve low-level robot navigation

Muhayyuddin, Aliakbar AkbariJan Rosell, A Real-Time Path-Planning Algorithm based on Receding Horizon Techniques, Journal of Intelligent & Robotic Systems, September 2018, Volume 91, Issue 3–4, pp 459–477, DOI: 10.1007/s10846-017-0698-z.

Physics-based motion planning is a challenging task, since it requires the computation of the robot motions while allowing possible interactions with (some of) the obstacles in the environment. Kinodynamic motion planners equipped with a dynamic engine acting as state propagator are usually used for that purpose. The difficulties arise in the setting of the adequate forces for the interactions and because these interactions may change the pose of the manipulatable obstacles, thus either facilitating or preventing the finding of a solution path. The use of knowledge can alleviate the stated difficulties. This paper proposes the use of an enhanced state propagator composed of a dynamic engine and a low-level geometric reasoning process that is used to determine how to interact with the objects, i.e. from where and with which forces. The proposal, called κ-PMP can be used with any kinodynamic planner, thus giving rise to e.g. κ-RRT. The approach also includes a preprocessing step that infers from a semantic abstract knowledge described in terms of an ontology the manipulation knowledge required by the reasoning process. The proposed approach has been validated with several examples involving an holonomic mobile robot, a robot with differential constraints and a serial manipulator, and benchmarked using several state-of-the art kinodynamic planners. The results showed a significant difference in the power consumption with respect to simple physics-based planning, an improvement in the success rate and in the quality of the solution paths.

A unifying framework for path planning in real-time (mainly for UAVs) and a nice summary of the state-of-the-art in modern path planning

M. Murillo, G. SánchezL. GenzelisL. Giovanini, A Real-Time Path-Planning Algorithm based on Receding Horizon Techniques, Journal of Intelligent & Robotic Systems, September 2018, Volume 91, Issue 3–4, pp 445–457, DOI: 10.1007/s10846-017-0740-1.

In this article we present a real-time path-planning algorithm that can be used to generate optimal and feasible paths for any kind of unmanned vehicle (UV). The proposed algorithm is based on the use of a simplified particle vehicle (PV) model, which includes the basic dynamics and constraints of the UV, and an iterated non-linear model predictive control (NMPC) technique that computes the optimal velocity vector (magnitude and orientation angles) that allows the PV to move toward desired targets. The computed paths are guaranteed to be feasible for any UV because: i) the PV is configured with similar characteristics (dynamics and physical constraints) as the UV, and ii) the feasibility of the optimization problem is guaranteed by the use of the iterated NMPC algorithm. As demonstration of the capabilities of the proposed path-planning algorithm, we explore several simulation examples in different scenarios. We consider the existence of static and dynamic obstacles and a follower condition.