Tag Archives: Conditional Random Fields

Modelling hierarchical stochastic signals (i.e., decomposable into sub-signals hierarchichally)

Truyen Tran, Dinh Phung, Hung Bui, Svetha Venkatesh, Hierarchical semi-Markov conditional random fields for deep recursive sequential data, Artificial Intelligence, Volume 246, May 2017, Pages 53-85, ISSN 0004-3702, DOI: 10.1016/j.artint.2017.02.003.

We present the hierarchical semi-Markov conditional random field (HSCRF), a generalisation of linear-chain conditional random fields to model deep nested Markov processes. It is parameterised as a conditional log-linear model and has polynomial time algorithms for learning and inference. We derive algorithms for partially-supervised learning and constrained inference. We develop numerical scaling procedures that handle the overflow problem. We show that when depth is two, the HSCRF can be reduced to the semi-Markov conditional random fields. Finally, we demonstrate the HSCRF on two applications: (i) recognising human activities of daily living (ADLs) from indoor surveillance cameras, and (ii) noun-phrase chunking. The HSCRF is capable of learning rich hierarchical models with reasonable accuracy in both fully and partially observed data cases.

Anticipating human actions through recognition of object affordances and use of Anticiopatory Conditional Random Fields

Koppula, H.S.; Saxena, A., Anticipating Human Activities Using Object Affordances for Reactive Robotic Response, in Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.38, no.1, pp.14-29, Jan. 1 2016, DOI: 10.1109/TPAMI.2015.2430335.

An important aspect of human perception is anticipation, which we use extensively in our day-to-day activities when interacting with other humans as well as with our surroundings. Anticipating which activities will a human do next (and how) can enable an assistive robot to plan ahead for reactive responses. Furthermore, anticipation can even improve the detection accuracy of past activities. The challenge, however, is two-fold: We need to capture the rich context for modeling the activities and object affordances, and we need to anticipate the distribution over a large space of future human activities. In this work, we represent each possible future using an anticipatory temporal conditional random field (ATCRF) that models the rich spatial-temporal relations through object affordances. We then consider each ATCRF as a particle and represent the distribution over the potential futures using a set of particles. In extensive evaluation on CAD-120 human activity RGB-D dataset, we first show that anticipation improves the state-of-the-art detection results. We then show that for new subjects (not seen in the training set), we obtain an activity anticipation accuracy (defined as whether one of top three predictions actually happened) of 84.1, 74.4 and 62.2 percent for an anticipation time of 1, 3 and 10 seconds respectively. Finally, we also show a robot using our algorithm for performing a few reactive responses.

Brief but nice related work about structured prediction (MRFs, CRFs, etc.)

Bratieres, S.; Quadrianto, N.; Ghahramani, Z., GPstruct: Bayesian Structured Prediction Using Gaussian Processes, Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.37, no.7, pp.1514,1520, July 1 2015, DOI: 10.1109/TPAMI.2014.2366151.

We introduce a conceptually novel structured prediction model, GPstruct, which is kernelized, non-parametric and Bayesian, by design. We motivate the model with respect to existing approaches, among others, conditional random fields (CRFs), maximum margin Markov networks (M ^3 N), and structured support vector machines (SVMstruct), which embody only a subset of its properties. We present an inference procedure based on Markov Chain Monte Carlo. The framework can be instantiated for a wide range of structured objects such as linear chains, trees, grids, and other general graphs. As a proof of concept, the model is benchmarked on several natural language processing tasks and a video gesture segmentation task involving a linear chain structure. We show prediction accuracies for GPstruct which are comparable to or exceeding those of CRFs and SVMstruct.