Author Archives: Juan-antonio Fernández-madrigal

A ROS module that improves real-time aspects of network communication among distributed ROS machines, and a nice analysis of wireless network characteristics and limitations

Danilo Tardioli, Ramviyas Parasuraman, Petter Ögren, Pound: A multi-master ROS node for reducing delay and jitter in wireless multi-robot networks, Robotics and Autonomous Systems, Volume 111, 2019, Pages 73-87, DOI: 10.1016/j.robot.2018.10.009.

The Robot Operating System (ROS) is a popular and widely used software framework for building robotics systems. With the growth of its popularity, it has started to be used in multi-robot systems as well. However, the TCP connections that the platform relies on for connecting the so-called ROS nodes presents several issues regarding limited-bandwidth, delays, and jitter, when used in wireless multi-hop networks. In this paper, we present a thorough analysis of the problem and propose a new ROS node called Pound to improve the wireless communication performance by reducing delay and jitter in data exchanges, especially in multi-hop networks. Pound allows the use of multiple ROS masters (roscores), features data compression, and importantly, introduces a priority scheme that allows favoring more important flows over less important ones. We compare Pound to the state-of-the-art solutions through extensive experiments and show that it performs equally well, or better in all the test cases, including a control-over-network example.

Interesting use of RL (deep-RL) for detection – reformulation of detection as a sequential decision process

F. Ghesu et al., Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 1, pp. 176-189, DOI: 10.1109/TPAMI.2017.2782687.

Robust and fast detection of anatomical structures is a prerequisite for both diagnostic and interventional medical image analysis. Current solutions for anatomy detection are typically based on machine learning techniques that exploit large annotated image databases in order to learn the appearance of the captured anatomy. These solutions are subject to several limitations, including the use of suboptimal feature engineering techniques and most importantly the use of computationally suboptimal search-schemes for anatomy detection. To address these issues, we propose a method that follows a new paradigm by reformulating the detection problem as a behavior learning task for an artificial agent. We couple the modeling of the anatomy appearance and the object search in a unified behavioral framework, using the capabilities of deep reinforcement learning and multi-scale image analysis. In other words, an artificial agent is trained not only to distinguish the target anatomical object from the rest of the body but also how to find the object by learning and following an optimal navigation path to the target object in the imaged volumetric space. We evaluated our approach on 1487 3D-CT volumes from 532 patients, totaling over 500,000 image slices and show that it significantly outperforms state-of-the-art solutions on detecting several anatomical structures with no failed cases from a clinical acceptance perspective, while also achieving a 20-30 percent higher detection accuracy. Most importantly, we improve the detection-speed of the reference methods by 2-3 orders of magnitude, achieving unmatched real-time performance on large 3D-CT scans.

A novel method for compacting a continuous high-dimensional value function for MDPs

Gorodetsky, A., Karaman, S., & Marzouk, Y., High-dimensional stochastic optimal control using continuous tensor decompositions, The International Journal of Robotics Research, 37(2–3), 340–377, DOI: 10.1177/0278364917753994.

Motion planning and control problems are embedded and essential in almost all robotics applications. These problems are often formulated as stochastic optimal control problems and solved using dynamic programming algorithms. Unfortunately, most existing algorithms that guarantee convergence to optimal solutions suffer from the curse of dimensionality: the run time of the algorithm grows exponentially with the dimension of the state space of the system. We propose novel dynamic programming algorithms that alleviate the curse of dimensionality in problems that exhibit certain low-rank structure. The proposed algorithms are based on continuous tensor decompositions recently developed by the authors. Essentially, the algorithms represent high-dimensional functions (e.g. the value function) in a compressed format, and directly perform dynamic programming computations (e.g. value iteration, policy iteration) in this format. Under certain technical assumptions, the new algorithms guarantee convergence towards optimal solutions with arbitrary precision. Furthermore, the run times of the new algorithms scale polynomially with the state dimension and polynomially with the ranks of the value function. This approach realizes substantial computational savings in “compressible” problem instances, where value functions admit low-rank approximations. We demonstrate the new algorithms in a wide range of problems, including a simulated six-dimensional agile quadcopter maneuvering example and a seven-dimensional aircraft perching example. In some of these examples, we estimate computational savings of up to 10 orders of magnitude over standard value iteration algorithms. We further demonstrate the algorithms running in real time on board a quadcopter during a flight experiment under motion capture.

A novel paradigm for motion planning based on probabilistic inference

Mukadam, M., Dong, J., Yan, X., Dellaert, F., & Boots, B. , Continuous-time Gaussian process motion planning via probabilistic inference, The International Journal of Robotics Research, 37(11), 1319–1340, DOI: 10.1177/0278364918790369.

We introduce a novel formulation of motion planning, for continuous-time trajectories, as probabilistic inference. We first show how smooth continuous-time trajectories can be represented by a small number of states using sparse Gaussian process (GP) models. We next develop an efficient gradient-based optimization algorithm that exploits this sparsity and GP interpolation. We call this algorithm the Gaussian Process Motion Planner (GPMP). We then detail how motion planning problems can be formulated as probabilistic inference on a factor graph. This forms the basis for GPMP2, a very efficient algorithm that combines GP representations of trajectories with fast, structure-exploiting inference via numerical optimization. Finally, we extend GPMP2 to an incremental algorithm, iGPMP2, that can efficiently replan when conditions change. We benchmark our algorithms against several sampling-based and trajectory optimization-based motion planning algorithms on planning problems in multiple environments. Our evaluation reveals that GPMP2 is several times faster than previous algorithms while retaining robustness. We also benchmark iGPMP2 on replanning problems, and show that it can find successful solutions in a fraction of the time required by GPMP2 to replan from scratch.

Interesting close-loop detection for robot SLAM that only uses odometry and topology

Rohou, S., Franek, P., Aubry, C., & Jaulin, L. , Proving the existence of loops in robot trajectories, The International Journal of Robotics Research, DOI: 10.1177/0278364918808367.

In this paper we present a reliable method to verify the existence of loops along the uncertain trajectory of a robot, based on proprioceptive measurements only, within a bounded-error context. The loop closure detection is one of the key points in simultaneous localization and mapping (SLAM) methods, especially in homogeneous environments with difficult scenes recognitions. The proposed approach is generic and could be coupled with conventional SLAM algorithms to reliably reduce their computing burden, thus improving the localization and mapping processes in the most challenging environments such as unexplored underwater extents. To prove that a robot performed a loop whatever the uncertainties in its evolution, we employ the notion of topological degree that originates in the field of differential topology. We show that a verification tool based on the topological degree is an optimal method for proving robot loops. This is demonstrated both on datasets from real missions involving autonomous underwater vehicles and by a mathematical discussion.

Perpetual power for small robots in a swarm

Farshad Arvin, Simon Watson, Ali Emre Turgut, Jose Espinosa, Tomáš Krajník, Barry Lennox, Perpetual Robot Swarm: Long-Term Autonomy of Mobile Robots Using On-the-fly Inductive Charging, Journal of Intelligent & Robotic Systems, December 2018, Volume 92, Issue 3–4, pp 395–412, DOI: 10.1007/s10846-017-0673-8.

Swarm robotics studies the intelligent collective behaviour emerging from long-term interactions of large number of simple robots. However, maintaining a large number of robots operational for long time periods requires significant battery capacity, which is an issue for small robots. Therefore, re-charging systems such as automated battery-swapping stations have been implemented. These systems require that the robots interrupt, albeit shortly, their activity, which influences the swarm behaviour. In this paper, a low-cost on-the-fly wireless charging system, composed of several charging cells, is proposed for use in swarm robotic research studies. To determine the system’s ability to support perpetual swarm operation, a probabilistic model that takes into account the swarm size, robot behaviour and charging area configuration, is outlined. Based on the model, a prototype system with 12 charging cells and a small mobile robot, Mona, was developed. A series of long-term experiments with different arenas and behavioural configurations indicated the model’s accuracy and demonstrated the system’s ability to support perpetual operation of multi-robotic system.

On the existence of prior knowledge, “pre-wired” in animal brains, that guides further learning

Elisabetta Versace, Antone Martinho-Truswell, Alex Kacelnik, Giorgio Vallortigara, Priors in Animal and Artificial Intelligence: Where Does Learning Begin?, Trends in Cognitive Sciences, Volume 22, Issue 11, 2018, Pages 963-965, DOI: 10.1016/j.tics.2018.07.005.

A major goal for the next generation of artificial intelligence (AI) is to build machines that are able to reason and cope with novel tasks, environments, and situations in a manner that approaches the abilities of animals. Evidence from precocial species suggests that driving learning through suitable priors can help to successfully face this challenge.

A new model of reinforcement learning based on the human brain that copes with continuous spaces through continuous rewards, with a short but nice state-of-the-art of RL applied to large, continuous spaces

Feifei Zhao, Yi Zeng, Guixiang Wang, Jun Bai, Bo Xu, A Brain-Inspired Decision Making Model Based on Top-Down Biasing of Prefrontal Cortex to Basal Ganglia and Its Application in Autonomous UAV Explorations, Cognitive Computation, Volume 10, Issue 2, pp 296–306, DOI: 10.1007/s12559-017-9511-3.

Decision making is a fundamental ability for intelligent agents (e.g., humanoid robots and unmanned aerial vehicles). During decision making process, agents can improve the strategy for interacting with the dynamic environment through reinforcement learning. Many state-of-the-art reinforcement learning models deal with relatively smaller number of state-action pairs, and the states are preferably discrete, such as Q-learning and Actor-Critic algorithms. While in practice, in many scenario, the states are continuous and hard to be properly discretized. Better autonomous decision making methods need to be proposed to handle these problems. Inspired by the mechanism of decision making in human brain, we propose a general computational model, named as prefrontal cortex-basal ganglia (PFC-BG) algorithm. The proposed model is inspired by the biological reinforcement learning pathway and mechanisms from the following perspectives: (1) Dopamine signals continuously update reward-relevant information for both basal ganglia and working memory in prefrontal cortex. (2) We maintain the contextual reward information in working memory. This has a top-down biasing effect on reinforcement learning in basal ganglia. The proposed model separates the continuous states into smaller distinguishable states, and introduces continuous reward function for each state to obtain reward information at different time. To verify the performance of our model, we apply it to many UAV decision making experiments, such as avoiding obstacles and flying through window and door, and the experiments support the effectiveness of the model. Compared with traditional Q-learning and Actor-Critic algorithms, the proposed model is more biologically inspired, and more accurate and faster to make decision.

Z-numbers: an extension of fuzzy variables for cognitive decision making, and the concept of cognitive information

Hong-gang Peng, Jian-qiang Wang, Outranking Decision-Making Method with Z-Number Cognitive Information, Cognitive Computation, Volume 10, Issue 5, pp 752–768, DOI: 10.1007/s12559-018-9556-y.

The Z-number provides an adequate and reliable description of cognitive information. The nature of Z-numbers is complex, however, and important issues in Z-number computation remain to be addressed. This study focuses on developing a computationally simple method with Z-numbers to address multicriteria decision-making (MCDM) problems. Processing Z-numbers requires the direct computation of fuzzy and probabilistic uncertainties. We used an effective method to analyze the Z-number construct. Next, we proposed some outranking relations of Z-numbers and defined the dominance degree of discrete Z-numbers. Also, after analyzing the characteristics of elimination and choice translating reality III (ELECTRE III) and qualitative flexible multiple criteria method (QUALIFLEX), we developed an improved outranking method. To demonstrate this method, we provided an illustrative example concerning job-satisfaction evaluation. We further verified the validity of the method by a criteria test and comparative analysis. The results demonstrate that the method can be successfully applied to real-world decision-making problems, and it can identify more reasonable outcomes than previous methods. This study overcomes the high computational complexity in existing Z-number computation frameworks by exploring the pairwise comparison of Z-numbers. The method inherits the merits of the classical outranking method and considers the non-compensability of criteria. Therefore, it has remarkable potential to address practical decision-making problems involving Z-information.

SLAM as a sampling problem, with some references to the signal sampling state-of-the-art

Golnoosh Elhami, et. al Sampling at Unknown Locations: Uniqueness and Reconstruction Under Constraints, IEEE Transactions on Signal Processing, Vol 66 no. 22, DOI: 10.1109/TSP.2018.2872019.

Traditional sampling results assume that the sample locations are known. Motivated by simultaneous localization and mapping (SLAM) and structure from motion (SfM), we investigate sampling at unknown locations. Without further constraints, the problem is often hopeless. For example, we recently showed that, for polynomial and bandlimited signals, it is possible to find two signals, arbitrarily far from each other, that fit the measurements. However, we also showed that this can be overcome by adding constraints to the sample positions. In this paper, we show that these constraints lead to a uniform sampling of a composite of functions. Furthermore, the formulation retains the key aspects of the SLAM and SfM problems, whilst providing uniqueness, in many cases. We demonstrate this by studying two simple examples of constrained sampling at unknown locations. In the first, we consider sampling a periodic bandlimited signal composite with an unknown linear function. We derive the sampling requirements for uniqueness and present an algorithm that recovers both the bandlimited signal and the linear warping. Furthermore, we prove that, when the requirements for uniqueness are not met, the cases of multiple solutions have measure zero. For our second example, we consider polynomials sampled such that the sampling positions are constrained by a rational function. We previously proved that, if a specific sampling requirement is met, uniqueness is achieved. In addition, we present an alternate minimization scheme for solving the resulting non-convex optimization problem. Finally, fully reproducible simulation results are provided to support our theoretical analysis.