Tag Archives: Automated Planning

Detecting novelties in the model of the world within MCTS

Bryan Loyall, Avi Pfeffer, James Niehaus, Michael Harradon, Paola Rizzo, Alex Gee, Joe Campolongo, Tyler Mayer, John Steigerwald, Coltrane: A domain-independent system for characterizing and planning in novel situations, Artificial Intelligence, Volume 345, 2025, 10.1016/j.artint.2025.104336.

AI systems operating in open-world environments must be able to adapt to impactful changes in the world, immediately when they occur, and be able to do this across the many types of changes that can occur. We are seeking to create methods to extend traditional AI systems so that they can (1) immediately recognize changes in how the world works that are impactful to task accomplishment; (2) rapidly characterize the nature of the change using the limited observations that are available when the change is first detected; (3) adapt to the change as well as feasible to accomplish the system’s tasks given the available observations; and (4) continue to improve the characterization and adaptation as additional observations are available. In this paper, we describe Coltrane, a domain-independent system for characterizing and planning in novel situations that uses only natural domain descriptions to generate its novelty-handling behavior, without any domain-specific anticipation of the novelty. Coltrane’s characterization method is based on probabilistic program synthesis of perturbations to programs expressed in a traditional programming language describing domain transition models. Its planning method is based on incorporating novel domain models in an MCTS search algorithm and on automatically adapting the heuristics used. Both a formal external evaluation and our own demonstrations show that Coltrane is capable of accurately characterizing interesting forms of novelty and of adapting its behavior to restore its performance to pre-novelty levels and even beyond.

Interesting mixture of automated planning with reinforcement learning

Matteo Leonetti, Luca Iocchi, Peter Stone, A synthesis of automated planning and reinforcement learning for efficient, robust decision-making, Artificial Intelligence, Volume 241, 2016, Pages 103-130, ISSN 0004-3702, DOI: 10.1016/j.artint.2016.07.004.

Automated planning and reinforcement learning are characterized by complementary views on decision making: the former relies on previous knowledge and computation, while the latter on interaction with the world, and experience. Planning allows robots to carry out different tasks in the same domain, without the need to acquire knowledge about each one of them, but relies strongly on the accuracy of the model. Reinforcement learning, on the other hand, does not require previous knowledge, and allows robots to robustly adapt to the environment, but often necessitates an infeasible amount of experience. We present Domain Approximation for Reinforcement LearnING (DARLING), a method that takes advantage of planning to constrain the behavior of the agent to reasonable choices, and of reinforcement learning to adapt to the environment, and increase the reliability of the decision making process. We demonstrate the effectiveness of the proposed method on a service robot, carrying out a variety of tasks in an office building. We find that when the robot makes decisions by planning alone on a given model it often fails, and when it makes decisions by reinforcement learning alone it often cannot complete its tasks in a reasonable amount of time. When employing DARLING, even when seeded with the same model that was used for planning alone, however, the robot can quickly learn a behavior to carry out all the tasks, improves over time, and adapts to the environment as it changes.