Tag Archives: Cognitive Models

A new model of cognition

Howard, N. & Hussain, A. The Fundamental Code Unit of the Brain: Towards a New Model for Cognitive Geometry, Cogn Comput (2018) 10: 426 DOI: 10.1007/s12559-017-9538-5.

This paper discusses the problems arising from the multidisciplinary nature of cognitive research and the need to conceptually unify insights from multiple fields into the phenomena that drive cognition. Specifically, the Fundamental Code Unit (FCU) is proposed as a means to better quantify the intelligent thought process at multiple levels of analysis. From the linguistic and behavioral output, FCU produces to the chemical and physical processes within the brain that drive it. The proposed method efficiently model the most complex decision-making process performed by the brain.

A summary of the Clarion cognitive architecture

Ron Sun, Anatomy of the Mind: a Quick Overview, Cognitive Computation, February 2017, Volume 9, Issue 1, pp 1–4, DOI: 10.1007/s12559-016-9444-2.

The recently published book, “Anatomy of the Mind,” explains psychological (cognitive) mechanisms, processes, and functionalities through a comprehensive computational theory of the human mind—that is, a cognitive architecture. The goal of the work has been to develop a unified framework and then to develop process-based mechanistic understanding of psychological phenomena within the unified framework. In this article, I will provide a quick overview of the work.

A computational cognitive architecture that models emotion

Ron Sun, Nick Wilson, Michael Lynch, Emotion: A Unified Mechanistic Interpretation from a Cognitive Architecture, Cognitive Computation, February 2016, Volume 8, Issue 1, pp 1–14, DOI: 10.1007/s12559-015-9374-4.

This paper reviews a project that attempts to interpret emotion, a complex and multifaceted phenomenon, from a mechanistic point of view, facilitated by an existing comprehensive computational cognitive architecture—CLARION. This cognitive architecture consists of a number of subsystems: the action-centered, non-action-centered, motivational, and metacognitive subsystems. From this perspective, emotion is, first and foremost, motivationally based. It is also action-oriented. It involves many other identifiable cognitive functionalities within these subsystems. Based on these functionalities, we fit the pieces together mechanistically (computationally) within the CLARION framework and capture a variety of important aspects of emotion as documented in the literature.

Interesting hypothesis about how cognitive abilities can be modelled with closed control loops that run in parallel -using hierarchies of abstraction and prediction-, traditionally used just for low-level behaviours

Giovanni Pezzulo, Paul Cisek, Navigating the Affordance Landscape: Feedback Control as a Process Model of Behavior and Cognition, Trends in Cognitive Sciences, Volume 20, Issue 6, June 2016, Pages 414-424, ISSN 1364-6613, DOI: 10.1016/j.tics.2016.03.013.

We discuss how cybernetic principles of feedback control, used to explain sensorimotor behavior, can be extended to provide a foundation for understanding cognition. In particular, we describe behavior as parallel processes of competition and selection among potential action opportunities (‘affordances’) expressed at multiple levels of abstraction. Adaptive selection among currently available affordances is biased not only by predictions of their immediate outcomes and payoffs but also by predictions of what new affordances they will make available. This allows animals to purposively create new affordances that they can later exploit to achieve high-level goals, resulting in intentional action that links across multiple levels of control. Finally, we discuss how such a ‘hierarchical affordance competition’ process can be mapped to brain structure.

Cognitive Models as Bridge between Brain and Behavior

Bradley C. Love, Cognitive Models as Bridge between Brain and Behavior, Trends in Cognitive Sciences, Volume 20, Issue 4, April 2016, Pages 247-248, ISSN 1364-6613, DOI: 10.1016/j.tics.2016.02.006.

How can disparate neural and behavioral measures be integrated? Turner and colleagues propose joint modeling as a solution. Joint modeling mutually constrains the interpretation of brain and behavioral measures by exploiting their covariation structure. Simultaneous estimation allows for more accurate prediction than would be possible by considering these measures in isolation.