Category Archives: Reinforcement Learning In Ai

Inclusion of LLMs in multiple task learning for generating rewards

Z. Lin, Y. Chen and Z. Liu, AutoSkill: Hierarchical Open-Ended Skill Acquisition for Long-Horizon Manipulation Tasks via Language-Modulated Rewards, IEEE Transactions on Cognitive and Developmental Systems, vol. 17, no. 5, pp. 1141-1152, Oct. 2025, 10.1109/TCDS.2025.3551298.

A desirable property of generalist robots is the ability to both bootstrap diverse skills and solve new long-horizon tasks in open-ended environments without human intervention. Recent advancements have shown that large language models (LLMs) encapsulate vast-scale semantic knowledge about the world to enable long-horizon robot planning. However, they are typically restricted to reasoning high-level instructions and lack world grounding, which makes it difficult for them to coordinately bootstrap and acquire new skills in unstructured environments. To this end, we propose AutoSkill, a hierarchical system that empowers the physical robot to automatically learn to cope with new long-horizon tasks by growing an open-ended skill library without hand-crafted rewards. AutoSkill consists of two key components: 1) an in-context skill chain generation and new skill bootstrapping guided by LLMs that inform the robot of discrete and interpretable skill instructions for skill retrieval and augmentation within the skill library; and 2) a zero-shot language-modulated reward scheme in conjunction with a meta prompter facilitates online new skill acquisition via expert-free supervision aligned with proposed skill directives. Extensive experiments conducted in both simulated and realistic environments demonstrate AutoSkill’s superiority over other LLM-based planners as well as hierarchical methods in expediting online learning for novel manipulation tasks.

Improvements in offline RL (from previously acquired datasets)

Lan Wu, Quan Liu, Renyang You, State slow feature softmax Q-value regularization for offline reinforcement learning, Engineering Applications of Artificial Intelligence, Volume 160, Part A, 2025, 10.1016/j.engappai.2025.111828.

Offline reinforcement learning is constrained by its reliance on pre-collected datasets, without the opportunity for further interaction with the environment. This restriction often results in distribution shifts, which can exacerbate Q-value overestimation and degrade policy performance. To address these issues, we propose a method called state slow feature softmax Q-value regularization (SQR), which enhances the stability and accuracy of Q-value estimation in offline settings. SQR employs slow feature representation learning to extract dynamic information from state trajectories, promoting the stability and robustness of the state representations. Additionally, a softmax operator is incorporated into the Q-value update process to smooth Q-value estimation, reducing overestimation and improving policy optimization. Finally, we apply our approach to locomotion and navigation tasks and establish a comprehensive experimental analysis framework. Empirical results demonstrate that SQR outperforms state-of-the-art offline RL baselines, achieving performance improvements ranging from 2.5% to 44.6% on locomotion tasks and 2.0% to 71.1% on navigation tasks. Moreover, it achieves the highest score on 7 out of 15 locomotion datasets and 4 out of 6 navigation datasets. Detailed experimental results confirm the stabilizing effect of slow feature learning and the effectiveness of the softmax regularization in mitigating Q-value overestimation, demonstrating the superiority of SQR in addressing key challenges in offline reinforcement learning.

Learning representations from RL based on symmetries

Alexander Dean, Eduardo Alonso, Esther Mondragón, MAlgebras of actions in an agent’s representations of the world, Artificial Intelligence, Volume 348, 2025, 10.1016/j.tics.2025.06.009.

Learning efficient representations allows robust processing of data, data that can then be generalised across different tasks and domains, and it is thus paramount in various areas of Artificial Intelligence, including computer vision, natural language processing and reinforcement learning, among others. Within the context of reinforcement learning, we propose in this paper a mathematical framework to learn representations by extracting the algebra of the transformations of worlds from the perspective of an agent. As a starting point, we use our framework to reproduce representations from the symmetry-based disentangled representation learning (SBDRL) formalism proposed by [1] and prove that, although useful, they are restricted to transformations that respond to the properties of algebraic groups. We then generalise two important results of SBDRL –the equivariance condition and the disentangling definition– from only working with group-based symmetry representations to working with representations capturing the transformation properties of worlds for any algebra, using examples common in reinforcement learning and generated by an algorithm that computes their corresponding Cayley tables. Finally, we combine our generalised equivariance condition and our generalised disentangling definition to show that disentangled sub-algebras can each have their own individual equivariance conditions, which can be treated independently, using category theory. In so doing, our framework offers a rich formal tool to represent different types of symmetry transformations in reinforcement learning, extending the scope of previous proposals and providing Artificial Intelligence developers with a sound foundation to implement efficient applications.

Model-based RL that addresses the problem of building models that can produce off-distribution data more safely

X. -Y. Liu et al., DOMAIN: Mildly Conservative Model-Based Offline Reinforcement Learning, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 55, no. 10, pp. 7142-7155, Oct. 2025, 10.1109/TSMC.2025.3578666.

Model-based reinforcement learning (RL), which learns an environment model from the offline dataset and generates more out-of-distribution model data, has become an effective approach to the problem of distribution shift in offline RL. Due to the gap between the learned and actual environment, conservatism should be incorporated into the algorithm to balance accurate offline data and imprecise model data. The conservatism of current algorithms mostly relies on model uncertainty estimation. However, uncertainty estimation is unreliable and leads to poor performance in certain scenarios, and the previous methods ignore differences between the model data, which brings great conservatism. To address the above issues, this article proposes a mildly conservative model-based offline RL algorithm (DOMAIN) without estimating model uncertainty, and designs the adaptive sampling distribution of model samples, which can adaptively adjust the model data penalty. In this article, we theoretically demonstrate that the Q value learned by the DOMAIN outside the region is a lower bound of the true Q value, the DOMAIN is less conservative than previous model-based offline RL algorithms, and has the guarantee of safety policy improvement. The results of extensive experiments show that DOMAIN outperforms prior RL algorithms and the average performance has improved by 1.8% on the D4RL benchmark.

Related: 10.1109/TSMC.2025.3583392

Improving reward shaping in Deep RL for avoiding user’s biases and boosting learning efficiency

Jiawei Lin, Xuekai Wei, Weizhi Xian, Jielu Yan, Leong Hou U, Yong Feng, Zhaowei Shang, Mingliang Zhou, Continuous reinforcement learning via advantage value difference reward shaping: A proximal policy optimization perspective, Engineering Applications of Artificial Intelligence, Volume 151, 2025 10.1016/j.engappai.2025.110676.

Deep reinforcement learning has shown great promise in industrial applications. However, these algorithms suffer from low learning efficiency because of sparse reward signals in continuous control tasks. Reward shaping addresses this issue by transforming sparse rewards into more informative signals, but some designs that rely on domain experts or heuristic rules can introduce cognitive biases, leading to suboptimal solutions. To overcome this challenge, this paper proposes the advantage value difference (AVD), a generalized potential-based end-to-end exploration reward function. The main contribution of this paper is to improve the agent’s exploration efficiency, accelerate the learning process, and prevent premature convergence to local optima. The method leverages the temporal difference error to estimate the potential of states and uses the advantage function to guide the learning process toward more effective strategies. In the context of engineering applications, this paper proves the superiority of AVD in continuous control tasks within the multi-joint dynamics with contact (MuJoCo) environment. Specifically, the proposed method achieves an average increase of 23.5% in episode rewards for the Hopper, Swimmer, and Humanoid tasks compared with the state-of-the-art approaches. The results demonstrate the significant improvement in learning efficiency achieved by AVD for industrial robotic systems.

RL training with a massive amount of scenarios, GPU accelerated

Michael Matthews, Michael Beukman, Chris Lu, Jakob Foerster, Kinetix: Investigating the Training of General Agents through Open-Ended Physics-Based Control Tasks, arXiv:2410.23208 [cs.LG].

While large models trained with self-supervised learning on offline datasets have shown remarkable capabilities in text and image domains, achieving the same generalisation for agents that act in sequential decision problems remains an open challenge. In this work, we take a step towards this goal by procedurally generating tens of millions of 2D physics-based tasks and using these to train a general reinforcement learning (RL) agent for physical control. To this end, we introduce Kinetix: an open-ended space of physics-based RL environments that can represent tasks ranging from robotic locomotion and grasping to video games and classic RL environments, all within a unified framework. Kinetix makes use of our novel hardware-accelerated physics engine Jax2D that allows us to cheaply simulate billions of environment steps during training. Our trained agent exhibits strong physical reasoning capabilities, being able to zero-shot solve unseen human-designed environments. Furthermore, fine-tuning this general agent on tasks of interest shows significantly stronger performance than training an RL agent *tabula rasa*. This includes solving some environments that standard RL training completely fails at. We believe this demonstrates the feasibility of large scale, mixed-quality pre-training for online RL and we hope that Kinetix will serve as a useful framework to investigate this further.

Generating intrinsic rewards to address the sparse reward problem of RL

Z. Gao et al., Self-Supervised Exploration via Temporal Inconsistency in Reinforcement Learning, IEEE Transactions on Artificial Intelligence, vol. 5, no. 11, pp. 5530-5539, Nov. 2024, DOI: 10.1109/TAI.2024.3413692.

In sparse extrinsic reward settings, reinforcement learning remains a challenge despite increasing interest in this field. Existing approaches suggest that intrinsic rewards can alleviate issues caused by reward sparsity. However, many studies overlook the critical role of temporal information, essential for human curiosity. This article introduces a novel intrinsic reward mechanism inspired by human learning processes, where curiosity is evaluated by comparing current observations with historical knowledge. Our method involves training a self-supervised prediction model, periodically saving snapshots of the model parameters, and employing the nuclear norm to assess the temporal inconsistency between predictions from different snapshots as intrinsic rewards. Additionally, we propose a variational weighting mechanism to adaptively assign weights to the snapshots, enhancing the model’s robustness and performance. Experimental results across various benchmark environments demonstrate the efficacy of our approach, which outperforms other state-of-the-art methods without incurring additional training costs and exhibits higher noise tolerance. Our findings indicate that leveraging temporal information in intrinsic rewards can significantly improve exploration performance, motivating future research to develop more robust and accurate reward systems for reinforcement learning.

Improving sample efficiency under sparse rewards and large continuous action spaces through predictive control in RL

Antonyshyn, L., Givigi, S., Deep Model-Based Reinforcement Learning for Predictive Control of Robotic Systems with Dense and Sparse Rewards, J Intell Robot Syst 110, 100 (2024) DOI: 10.1007/s10846-024-02118-y.

Sparse rewards and sample efficiency are open areas of research in the field of reinforcement learning. These problems are especially important when considering applications of reinforcement learning to robotics and other cyber-physical systems. This is so because in these domains many tasks are goal-based and naturally expressed with binary successes and failures, action spaces are large and continuous, and real interactions with the environment are limited. In this work, we propose Deep Value-and-Predictive-Model Control (DVPMC), a model-based predictive reinforcement learning algorithm for continuous control that uses system identification, value function approximation and sampling-based optimization to select actions. The algorithm is evaluated on a dense reward and a sparse reward task. We show that it can match the performance of a predictive control approach to the dense reward problem, and outperforms model-free and model-based learning algorithms on the sparse reward task on the metrics of sample efficiency and performance. We verify the performance of an agent trained in simulation using DVPMC on a real robot playing the reach-avoid game. Video of the experiment can be found here: https://youtu.be/0Q274kcfn4c.

A relatively simple way of reducing the sampling cost of DQN

Hossein Hassani, Soodeh Nikan, Abdallah Shami, Traffic navigation via reinforcement learning with episodic-guided prioritized experience replay, Engineering Applications of Artificial Intelligence, Volume 137, Part A, 2024, DOI: 10.1016/j.engappai.2024.109147.

Deep Reinforcement Learning (DRL) models play a fundamental role in autonomous driving applications; however, they typically suffer from sample inefficiency because they often require many interactions with the environment to learn effective policies. This makes the training process time-consuming. To address this shortcoming, Prioritized Experience Replay (PER) has proven to be effective by prioritizing samples with high Temporal-Difference (TD) error for learning. In this context, this study contributes to artificial intelligence by proposing a sample-efficient DRL algorithm called Episodic-Guided Prioritized Experience Replay (EPER). The core innovation of EPER lies in the utilization of an episodic memory, dedicated to storing successful training episodes. Within this memory, expected returns for each state–action pair are extracted. These returns, combined with TD error-based prioritization, form a novel objective function for deep Q-network training. To prevent excessive determinism, EPER introduces exploration into the learning process by incorporating a regularization term into the objective function that allows exploration of state-space regions with diverse Q-values. The proposed EPER algorithm is suitable to train a DRL agent for handling episodic tasks, and it can be integrated into off-policy DRL models. EPER is employed for traffic navigation through scenarios such as highway driving, merging, roundabout, and intersection to showcase its application in engineering. The attained results denote that, compared with the PER and an additional state-of-the-art training technique, EPER is superior in expediting the training of the agent and learning a more optimal policy that leads to lower collision rates within the constructed navigation scenarios.

A novel way of addressing the maximization bias in RL

Martin Waltz, Ostap Okhrin, Addressing maximization bias in reinforcement learning with two-sample testing, Artificial Intelligence, Volume 336, 2024, DOI: 10.1016/j.artint.2024.104204.

Value-based reinforcement-learning algorithms have shown strong results in games, robotics, and other real-world applications. Overestimation bias is a known threat to those algorithms and can sometimes lead to dramatic performance decreases or even complete algorithmic failure. We frame the bias problem statistically and consider it an instance of estimating the maximum expected value (MEV) of a set of random variables. We propose the T-Estimator (TE) based on two-sample testing for the mean, that flexibly interpolates between over- and underestimation by adjusting the significance level of the underlying hypothesis tests. We also introduce a generalization, termed K-Estimator (KE), that obeys the same bias and variance bounds as the TE and relies on a nearly arbitrary kernel function. We introduce modifications of Q-Learning and the Bootstrapped Deep Q-Network (BDQN) using the TE and the KE, and prove convergence in the tabular setting. Furthermore, we propose an adaptive variant of the TE-based BDQN that dynamically adjusts the significance level to minimize the absolute estimation bias. All proposed estimators and algorithms are thoroughly tested and validated on diverse tasks and environments, illustrating the bias control and performance potential of the TE and KE.