Category Archives: Reinforcement Learning In Ai

RL with both discrete and continuous actions

Chengcheng Yan, Shujie Chen, Jiawei Xu, Xuejie Wang, Zheng Peng, Hybrid Reinforcement Learning in parameterized action space via fluctuates constraint, Engineering Applications of Artificial Intelligence, Volume 162, Part C, 2025 10.1016/j.engappai.2025.112499.

Parameterized actions in Reinforcement Learning (RL) are composed of discrete-continuous hybrid action parameters, which are widely employed in game scenarios. However, previous works have often concentrated on the network structure of RL algorithms to solve hybrid actions, neglecting the impact of fluctuations in action parameters for agent move trajectory. Due to the coupling between discrete and continuous actions, instability in discrete actions influences the selection of corresponding continuous parameters, resulting in the agent deviating from the optimal move path. In this paper, we propose a parameterized RL approach based on parameter fluctuation restriction (PFR) to address this problem, called CP-DQN. Our method effectively mitigated value fluctuation in action parameters by constraining the action parameter between adjacent time steps. Additionally, we have incorporated a supervision module to optimize the entire training process. To quantify the superiority of our approach in minimizing trajectory deviations for agents, we propose an indicator to measure the influence of parameter fluctuations on performance in hybrid action space. Our method is evaluated in three environments with hybrid action spaces, and the experiments demonstrate the superiority of our method compared to existing approaches.

A variant of RL aimed at reducing bias of conventional Q-learning

Fanghui Huang, Wenqi Han, Xiang Li, Xinyang Deng, Wen Jiang, Reducing the estimation bias and variance in reinforcement learning via Maxmean and Aitken value iteration, Engineering Applications of Artificial Intelligence, Volume 162, Part C, 2025, 10.1016/j.engappai.2025.112502.

The value-based reinforcement leaning methods suffer from overestimation bias, because of the existence of max operator, resulting in suboptimal policies. Meanwhile, variance in value estimation will cause the instability of networks. Many algorithms have been presented to solve the mentioned, but these lack the theoretical analysis about the degree of estimation bias, and the trade-off between the estimation bias and variance. Motivated by the above, in this paper, we propose a novel method based on Maxmean and Aitken value iteration, named MMAVI. The Maxmean operation allows the average of multiple state–action values (Q values) to be used as the estimated target value to mitigate the bias and variance. The Aitken value iteration is used to update Q values and improve the convergence rate. Based on the proposed method, combined with Q-learning and deep Q-network, we design two novel algorithms to adapt to different environments. To understand the effect of MMAVI, we analyze it both theoretically and empirically. In theory, we derive the closed-form expressions of reducing bias and variance, and prove that the convergence rate of our proposed method is faster than the traditional methods with Bellman equation. In addition, the convergence of our algorithms is proved in a tabular setting. Finally, we demonstrate that our proposed algorithms outperform the state-of-the-art algorithms in several environments.

A quantitative demonstration based on MDPs of the increasing need of a world model (learnt or given) as the complexity of the task and the performance of the agent increase

Jonathan Richens, David Abel, Alexis Bellot, Tom Everitt, General agents contain world models, arXiv cs:AI, Sep. 2025, arXiv:2506.01622.

Are world models a necessary ingredient for flexible, goal-directed behaviour, or is model-free learning sufficient? We provide a formal answer to this question, showing that any agent capable of generalizing to multi-step goal-directed tasks must have learned a predictive model of its environment. We show that this model can be extracted from the agent’s policy, and that increasing the agents performance or the complexity of the goals it can achieve requires learning increasingly accurate world models. This has a number of consequences: from developing safe and general agents, to bounding agent capabilities in complex environments, and providing new algorithms for eliciting world models from agents.

Inclusion of LLMs in multiple task learning for generating rewards

Z. Lin, Y. Chen and Z. Liu, AutoSkill: Hierarchical Open-Ended Skill Acquisition for Long-Horizon Manipulation Tasks via Language-Modulated Rewards, IEEE Transactions on Cognitive and Developmental Systems, vol. 17, no. 5, pp. 1141-1152, Oct. 2025, 10.1109/TCDS.2025.3551298.

A desirable property of generalist robots is the ability to both bootstrap diverse skills and solve new long-horizon tasks in open-ended environments without human intervention. Recent advancements have shown that large language models (LLMs) encapsulate vast-scale semantic knowledge about the world to enable long-horizon robot planning. However, they are typically restricted to reasoning high-level instructions and lack world grounding, which makes it difficult for them to coordinately bootstrap and acquire new skills in unstructured environments. To this end, we propose AutoSkill, a hierarchical system that empowers the physical robot to automatically learn to cope with new long-horizon tasks by growing an open-ended skill library without hand-crafted rewards. AutoSkill consists of two key components: 1) an in-context skill chain generation and new skill bootstrapping guided by LLMs that inform the robot of discrete and interpretable skill instructions for skill retrieval and augmentation within the skill library; and 2) a zero-shot language-modulated reward scheme in conjunction with a meta prompter facilitates online new skill acquisition via expert-free supervision aligned with proposed skill directives. Extensive experiments conducted in both simulated and realistic environments demonstrate AutoSkill’s superiority over other LLM-based planners as well as hierarchical methods in expediting online learning for novel manipulation tasks.

Improvements in offline RL (from previously acquired datasets)

Lan Wu, Quan Liu, Renyang You, State slow feature softmax Q-value regularization for offline reinforcement learning, Engineering Applications of Artificial Intelligence, Volume 160, Part A, 2025, 10.1016/j.engappai.2025.111828.

Offline reinforcement learning is constrained by its reliance on pre-collected datasets, without the opportunity for further interaction with the environment. This restriction often results in distribution shifts, which can exacerbate Q-value overestimation and degrade policy performance. To address these issues, we propose a method called state slow feature softmax Q-value regularization (SQR), which enhances the stability and accuracy of Q-value estimation in offline settings. SQR employs slow feature representation learning to extract dynamic information from state trajectories, promoting the stability and robustness of the state representations. Additionally, a softmax operator is incorporated into the Q-value update process to smooth Q-value estimation, reducing overestimation and improving policy optimization. Finally, we apply our approach to locomotion and navigation tasks and establish a comprehensive experimental analysis framework. Empirical results demonstrate that SQR outperforms state-of-the-art offline RL baselines, achieving performance improvements ranging from 2.5% to 44.6% on locomotion tasks and 2.0% to 71.1% on navigation tasks. Moreover, it achieves the highest score on 7 out of 15 locomotion datasets and 4 out of 6 navigation datasets. Detailed experimental results confirm the stabilizing effect of slow feature learning and the effectiveness of the softmax regularization in mitigating Q-value overestimation, demonstrating the superiority of SQR in addressing key challenges in offline reinforcement learning.

Learning representations from RL based on symmetries

Alexander Dean, Eduardo Alonso, Esther Mondragón, MAlgebras of actions in an agent’s representations of the world, Artificial Intelligence, Volume 348, 2025, 10.1016/j.tics.2025.06.009.

Learning efficient representations allows robust processing of data, data that can then be generalised across different tasks and domains, and it is thus paramount in various areas of Artificial Intelligence, including computer vision, natural language processing and reinforcement learning, among others. Within the context of reinforcement learning, we propose in this paper a mathematical framework to learn representations by extracting the algebra of the transformations of worlds from the perspective of an agent. As a starting point, we use our framework to reproduce representations from the symmetry-based disentangled representation learning (SBDRL) formalism proposed by [1] and prove that, although useful, they are restricted to transformations that respond to the properties of algebraic groups. We then generalise two important results of SBDRL –the equivariance condition and the disentangling definition– from only working with group-based symmetry representations to working with representations capturing the transformation properties of worlds for any algebra, using examples common in reinforcement learning and generated by an algorithm that computes their corresponding Cayley tables. Finally, we combine our generalised equivariance condition and our generalised disentangling definition to show that disentangled sub-algebras can each have their own individual equivariance conditions, which can be treated independently, using category theory. In so doing, our framework offers a rich formal tool to represent different types of symmetry transformations in reinforcement learning, extending the scope of previous proposals and providing Artificial Intelligence developers with a sound foundation to implement efficient applications.

Model-based RL that addresses the problem of building models that can produce off-distribution data more safely

X. -Y. Liu et al., DOMAIN: Mildly Conservative Model-Based Offline Reinforcement Learning, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 55, no. 10, pp. 7142-7155, Oct. 2025, 10.1109/TSMC.2025.3578666.

Model-based reinforcement learning (RL), which learns an environment model from the offline dataset and generates more out-of-distribution model data, has become an effective approach to the problem of distribution shift in offline RL. Due to the gap between the learned and actual environment, conservatism should be incorporated into the algorithm to balance accurate offline data and imprecise model data. The conservatism of current algorithms mostly relies on model uncertainty estimation. However, uncertainty estimation is unreliable and leads to poor performance in certain scenarios, and the previous methods ignore differences between the model data, which brings great conservatism. To address the above issues, this article proposes a mildly conservative model-based offline RL algorithm (DOMAIN) without estimating model uncertainty, and designs the adaptive sampling distribution of model samples, which can adaptively adjust the model data penalty. In this article, we theoretically demonstrate that the Q value learned by the DOMAIN outside the region is a lower bound of the true Q value, the DOMAIN is less conservative than previous model-based offline RL algorithms, and has the guarantee of safety policy improvement. The results of extensive experiments show that DOMAIN outperforms prior RL algorithms and the average performance has improved by 1.8% on the D4RL benchmark.

Related: 10.1109/TSMC.2025.3583392

Improving reward shaping in Deep RL for avoiding user’s biases and boosting learning efficiency

Jiawei Lin, Xuekai Wei, Weizhi Xian, Jielu Yan, Leong Hou U, Yong Feng, Zhaowei Shang, Mingliang Zhou, Continuous reinforcement learning via advantage value difference reward shaping: A proximal policy optimization perspective, Engineering Applications of Artificial Intelligence, Volume 151, 2025 10.1016/j.engappai.2025.110676.

Deep reinforcement learning has shown great promise in industrial applications. However, these algorithms suffer from low learning efficiency because of sparse reward signals in continuous control tasks. Reward shaping addresses this issue by transforming sparse rewards into more informative signals, but some designs that rely on domain experts or heuristic rules can introduce cognitive biases, leading to suboptimal solutions. To overcome this challenge, this paper proposes the advantage value difference (AVD), a generalized potential-based end-to-end exploration reward function. The main contribution of this paper is to improve the agent’s exploration efficiency, accelerate the learning process, and prevent premature convergence to local optima. The method leverages the temporal difference error to estimate the potential of states and uses the advantage function to guide the learning process toward more effective strategies. In the context of engineering applications, this paper proves the superiority of AVD in continuous control tasks within the multi-joint dynamics with contact (MuJoCo) environment. Specifically, the proposed method achieves an average increase of 23.5% in episode rewards for the Hopper, Swimmer, and Humanoid tasks compared with the state-of-the-art approaches. The results demonstrate the significant improvement in learning efficiency achieved by AVD for industrial robotic systems.

RL training with a massive amount of scenarios, GPU accelerated

Michael Matthews, Michael Beukman, Chris Lu, Jakob Foerster, Kinetix: Investigating the Training of General Agents through Open-Ended Physics-Based Control Tasks, arXiv:2410.23208 [cs.LG].

While large models trained with self-supervised learning on offline datasets have shown remarkable capabilities in text and image domains, achieving the same generalisation for agents that act in sequential decision problems remains an open challenge. In this work, we take a step towards this goal by procedurally generating tens of millions of 2D physics-based tasks and using these to train a general reinforcement learning (RL) agent for physical control. To this end, we introduce Kinetix: an open-ended space of physics-based RL environments that can represent tasks ranging from robotic locomotion and grasping to video games and classic RL environments, all within a unified framework. Kinetix makes use of our novel hardware-accelerated physics engine Jax2D that allows us to cheaply simulate billions of environment steps during training. Our trained agent exhibits strong physical reasoning capabilities, being able to zero-shot solve unseen human-designed environments. Furthermore, fine-tuning this general agent on tasks of interest shows significantly stronger performance than training an RL agent *tabula rasa*. This includes solving some environments that standard RL training completely fails at. We believe this demonstrates the feasibility of large scale, mixed-quality pre-training for online RL and we hope that Kinetix will serve as a useful framework to investigate this further.

Generating intrinsic rewards to address the sparse reward problem of RL

Z. Gao et al., Self-Supervised Exploration via Temporal Inconsistency in Reinforcement Learning, IEEE Transactions on Artificial Intelligence, vol. 5, no. 11, pp. 5530-5539, Nov. 2024, DOI: 10.1109/TAI.2024.3413692.

In sparse extrinsic reward settings, reinforcement learning remains a challenge despite increasing interest in this field. Existing approaches suggest that intrinsic rewards can alleviate issues caused by reward sparsity. However, many studies overlook the critical role of temporal information, essential for human curiosity. This article introduces a novel intrinsic reward mechanism inspired by human learning processes, where curiosity is evaluated by comparing current observations with historical knowledge. Our method involves training a self-supervised prediction model, periodically saving snapshots of the model parameters, and employing the nuclear norm to assess the temporal inconsistency between predictions from different snapshots as intrinsic rewards. Additionally, we propose a variational weighting mechanism to adaptively assign weights to the snapshots, enhancing the model’s robustness and performance. Experimental results across various benchmark environments demonstrate the efficacy of our approach, which outperforms other state-of-the-art methods without incurring additional training costs and exhibits higher noise tolerance. Our findings indicate that leveraging temporal information in intrinsic rewards can significantly improve exploration performance, motivating future research to develop more robust and accurate reward systems for reinforcement learning.