#### Antonyshyn, L., Givigi, S., **Deep Model-Based Reinforcement Learning for Predictive Control of Robotic Systems with Dense and Sparse Rewards,** J Intell Robot Syst 110, 100 (2024) DOI: 10.1007/s10846-024-02118-y.

Sparse rewards and sample efficiency are open areas of research in the field of reinforcement learning. These problems are especially important when considering applications of reinforcement learning to robotics and other cyber-physical systems. This is so because in these domains many tasks are goal-based and naturally expressed with binary successes and failures, action spaces are large and continuous, and real interactions with the environment are limited. In this work, we propose Deep Value-and-Predictive-Model Control (DVPMC), a model-based predictive reinforcement learning algorithm for continuous control that uses system identification, value function approximation and sampling-based optimization to select actions. The algorithm is evaluated on a dense reward and a sparse reward task. We show that it can match the performance of a predictive control approach to the dense reward problem, and outperforms model-free and model-based learning algorithms on the sparse reward task on the metrics of sample efficiency and performance. We verify the performance of an agent trained in simulation using DVPMC on a real robot playing the reach-avoid game. Video of the experiment can be found here: https://youtu.be/0Q274kcfn4c.