Monthly Archives: February 2025

You are browsing the site archives by month.

RL for multiple tasks in the case of quadrotors and a short state of the art about the general problem

J. Xing, I. Geles, Y. Song, E. Aljalbout and D. Scaramuzza, Multi-Task Reinforcement Learning for Quadrotors, IEEE Robotics and Automation Letters, vol. 10, no. 3, pp. 2112-2119, March 2025, DOI: 10.1109/LRA.2024.3520894.

Reinforcement learning (RL) has shown great effectiveness in quadrotor control, enabling specialized policies to develop even human-champion-level performance in single-task scenarios. However, these specialized policies often struggle with novel tasks, requiring a complete retraining of the policy from scratch. To address this limitation, this paper presents a novel multi-task reinforcement learning (MTRL) framework tailored for quadrotor control, leveraging the shared physical dynamics of the platform to enhance sample efficiency and task performance. By employing a multi-critic architecture and shared task encoders, our framework facilitates knowledge transfer across tasks, enabling a single policy to execute diverse maneuvers, including high-speed stabilization, velocity tracking, and autonomous racing. Our experimental results, validated both in simulation and real-world scenarios, demonstrate that our framework outperforms baseline approaches in terms of sample efficiency and overall task performance. Video is available at https://youtu.be/HfK9UT1OVnY.

An adaptive KF for estimating angles from IMUs

Zolfa Anvari, Ali Mirhaghgoo, Yasin Salehi, Real-time angle estimation in IMU sensors: An adaptive Kalman filter approach with forgetting factor, Mechatronics, Volume 106, 2025, DOI: 10.1016/j.mechatronics.2024.103280.

In recent years, the applications of Inertial Measurement Unit (IMU) sensors have witnessed significant growth across multiple fields. However, challenges regarding angle estimation using these sensors have emerged, primarily because of the lack of accuracy in accelerometer-based dynamic motion measurements and the associated bias and error accumulation when combined with gyroscope integration. Consequently, the Kalman filter has become a popular choice for addressing these issues, as it enables the sensor to operate dynamically. Despite its widespread use, the Kalman filter requires precise noise statistics estimation for optimal noise cancellation. To accommodate this requirement, adaptive Kalman filter algorithms have been developed for estimating zero-mean Gaussian process matrix (Q) and measurement matrix (R) variances. This study introduces a real-time adaptive approach that employs a forgetting factor to precisely estimate roll and pitch angles in a 6-axis IMU. The study’s novelty lies in its algorithm, which computes the forgetting factor based on the estimation error of the last samples in the sequence. Experimental results for roll angle indicate that, in response to a step change signal, this method achieves a 54%, 39%, and 70% reduction in RMS error relative to the raw sensor data, traditional Kalman filter, and a hybrid adaptive method, respectively. Moreover, this technique exhibits significant improvements in both fixed and sinusoidal conditions for roll and pitch angles, successfully carrying out tasks within required timescales without failures related to computation time.

On the reasons of the pervasiveness of the myth of meritocracy

Ian R. Hadden, Céline Darnon, Lewis Doyle, Matthew J. Easterbrook, Sébastien Goudeau, Andrei Cimpian, Why the belief in meritocracy is so pervasive, Trends in Cognitive Sciences, Volume 29, Issue 2, 2025, Pages 101-104, DOI: 10.1016/j.tics.2024.12.008.

People worldwide tend to believe that their societies are more meritocratic than they actually are. We propose the belief in meritocracy is widespread because it is rooted in simple, seemingly obvious causal–explanatory intuitions. Our proposal suggests solutions for debunking the myth of meritocracy and increasing support for equity-oriented policies.