Category Archives: Human-robot Interaction

Human+machine sequential decision making

Q. Zhang, Y. Kang, Y. -B. Zhao, P. Li and S. You, Traded Control of Human\u2013Machine Systems for Sequential Decision-Making Based on Reinforcement Learning, IEEE Transactions on Artificial Intelligence, vol. 3, no. 4, pp. 553-566, Aug. 2022 DOI: 10.1109/TAI.2021.3127857.

Sequential decision-making (SDM) is a common type of decision-making problem with sequential and multistage characteristics. Among them, the learning and updating of policy are the main challenges in solving SDM problems. Unlike previous machine autonomy driven by artificial intelligence alone, we improve the control performance of SDM tasks by combining human intelligence and machine intelligence. Specifically, this article presents a paradigm of a human\u2013machine traded control systems based on reinforcement learning methods to optimize the solution process of sequential decision problems. By designing the idea of autonomous boundary and credibility assessment, we enable humans and machines at the decision-making level of the systems to collaborate more effectively. And the arbitration in the human\u2013machine traded control systems introduces the Bayesian neural network and the dropout mechanism to consider the uncertainty and security constraints. Finally, experiments involving machine traded control, human traded control were implemented. The preliminary experimental results of this article show that our traded control method improves decision-making performance and verifies the effectiveness for SDM problems.

POMDPs to combine human semantic sensing with robot sensing

Luke Burks, Nisar Ahmed, Ian Loefgren, Luke Barbier, Jeremy Muesing, Jamison McGinley, Sousheel Vunnam, Collaborative human-autonomy semantic sensing through structured POMDP planning, . Robotics and Autonomous Systems, Volume 140, 2021 DOI: 10.1016/j.robot.2021.103753.

Autonomous unmanned systems and robots must be able to actively leverage all available information sources — including imprecise but readily available semantic observations provided by human collaborators. This work develops and validates a novel active collaborative human–machine sensing solution for robotic information gathering and optimal decision making problems, with an example implementation of a dynamic target search scenario. Our approach uses continuous partially observable Markov decision process (CPOMDP) planning to generate vehicle trajectories that optimally exploit imperfect detection data from onboard sensors, as well as semantic natural language observations that can be specifically requested from human sensors. The key innovations are a method for the inclusion of a human querying/sensing model in a CPOMDP based autonomous decision making process, as well as a scalable hierarchical Gaussian mixture model formulation for efficiently solving CPOMDPs with semantic observations in continuous dynamic state spaces. Unlike previous state-of-the-art approaches this allows planning in large, complex, highly segmented environments. Our solution is demonstrated and validated with a real human–robot team engaged in dynamic indoor target search and capture scenarios on a custom testbed..

A model of the psychomotor behaviour of humans intended to be useful for integration with robots

Stephen Fox, Adrian Kotelba, Ilari Marstio, Jari Montonen, Aligning human psychomotor characteristics with robots, exoskeletons and augmented reality, Robotics and Computer-Integrated Manufacturing, Volume 63, 2020, DOI: 10.1016/j.rcim.2019.101922.

In previous production literature, the uncertainty of human behaviour has been recognized as a source of productivity, quality, and safety problems. However, fundamental reasons for the uncertainty of human behavior have received little analysis in the production literature. Furthermore, potential for these fundamental reasons to be aligned with production technologies in order to improve production performance has not been addressed. By contrast, in this paper, fundamental reasons for the uncertainty of human behaviour are explained through a model of psychomotor characteristics that encompasses physiology, past experiences, personality, gender, culture, emotion, reasoning, and biocybernetics. Through reference to 10 action research cases, the formal model is applied to provide guidelines for planning production work that includes robots, exoskeletons, and augmented reality.

Symbol grounding through neural networks

Shridhar M, Mittal D, Hsu D., INGRESS: Interactive visual grounding of referring expressions, The International Journal of Robotics Research. January 2020, DOI: 10.1177/0278364919897133.

This article presents INGRESS, a robot system that follows human natural language instructions to pick and place everyday objects. The key question here is to ground referring expressions: understand expressions about objects and their relationships from image and natural language inputs. INGRESS allows unconstrained object categories and rich language expressions. Further, it asks questions to clarify ambiguous referring expressions interactively. To achieve these, we take the approach of grounding by generation and propose a two-stage neural-network model for grounding. The first stage uses a neural network to generate visual descriptions of objects, compares them with the input language expressions, and identifies a set of candidate objects. The second stage uses another neural network to examine all pairwise relations between the candidates and infers the most likely referred objects. The same neural networks are used for both grounding and question generation for disambiguation. Experiments show that INGRESS outperformed a state-of-the-art method on the RefCOCO dataset and in robot experiments with humans. The INGRESS source code is available at https://github.com/MohitShridhar/ingress.

Sharing beliefs (pdfs) between human and robot

Rina Tse, Mark Campbell, Human–Robot Communications of Probabilistic Beliefs via a Dirichlet Process Mixture of Statements, IEEE Transactions on Robotics, vol. 34, no. 5, DOI: 10.1109/TRO.2018.2830360.

This paper presents a natural framework for information sharing in cooperative tasks involving humans and robots. In this framework, all information gathered over time by a human–robot team is exchanged and summarized in the form of a fused probability density function (pdf). An approach for an intelligent system to describe its belief pdfs in English expressions is presented. This belief expression generation is achieved through two goodness measures: semantic correctness and information preservation. In order to describe complex, multimodal belief pdfs, a Mixture of Statements (MoS) model is proposed such that optimal expressions can be generated through compositions of multiple statements. The model is further extended to a nonparametric Dirichlet process MoS generation, such that the optimal number of statements required for describing a given pdf is automatically determined. Results based on information loss, human collaborative task performances, and correctness rating scores suggest that the proposed method for generating belief expressions is an effective approach for communicating probabilistic information between robots and humans.