A developmental architecture for sensory-motor skills based on predictors, and a nice state-of-the-art in cognitive architectures for sensory-motor skill learning

E. Wieser and G. Cheng, A Self-Verifying Cognitive Architecture for Robust Bootstrapping of Sensory-Motor Skills via Multipurpose Predictors, IEEE Transactions on Cognitive and Developmental Systems, vol. 10, no. 4, pp. 1081-1095, DOI: 10.1109/TCDS.2018.2871857.

The autonomous acquisition of sensory-motor skills along multiple developmental stages is one of the current challenges in robotics. To this end, we propose a new developmental cognitive architecture that combines multipurpose predictors and principles of self-verification for the robust bootstrapping of sensory-motor skills. Our architecture operates with loops formed by both mental simulation of sensory-motor sequences and their subsequent physical trial on a robot. During these loops, verification algorithms monitor the predicted and the physically observed sensory-motor data. Multiple types of predictors are acquired through several developmental stages. As a result, the architecture can select and plan actions, adapt to various robot platforms by adjusting proprioceptive feedback, predict the risk of self-collision, learn from a previous interaction stage by validating and extracting sensory-motor data for training the predictor of a subsequent stage, and finally acquire an internal representation for evaluating the performance of its predictors. These cognitive capabilities in turn realize the bootstrapping of early hand-eye coordination and its improvement. We validate the cognitive capabilities experimentally and, in particular, show an improvement of reaching as an example skill.

Weighting relations between concepts to form (hierarchically) further concepts

T. Nakamura and T. Nagai, Ensemble-of-Concept Models for Unsupervised Formation of Multiple Categories, IEEE Transactions on Cognitive and Developmental Systems, vol. 10, no. 4, pp. 1043-1057, DOI: 10.1109/TCDS.2017.2745502.

Recent studies have shown that robots can form concepts and understand the meanings of words through inference. The key idea underlying these studies is the “multimodal categorization” of a robot’s experiences. Despite the success in the formation of concepts by robots, a major drawback of previous studies stems from the fact that they have been mainly focused on object concepts. Obviously, human concepts are limited not only to object concepts but also to other kinds such as those connected to the tactile sense and color. In this paper, we propose a novel model called the ensemble-of-concept models (EoCMs) to form various kinds of concepts. In EoCMs, we introduce weights that represent the strength connecting modalities and concepts. By changing these weights, many concepts that are connected to particular modalities can be formed; however, meaningless concepts for humans are included in these concepts. To communicate with humans, robots are required to form meaningful concepts for us. Therefore, we utilize utterances taught by human users as the robot observes objects. The robot connects words included in the teaching utterances with formed concepts and selects meaningful concepts to communicate with users. The experimental results show that the robot can form not only object concepts but also others such as color-related concepts and haptic concepts. Furthermore, using word2vec, we compare the meanings of the words acquired by the robot in connecting them to the concepts formed.

A definition of emergence and its application to emergence in robots

R. L. Sturdivant and E. K. P. Chong, The Necessary and Sufficient Conditions for Emergence in Systems Applied to Symbol Emergence in Robots, IEEE Transactions on Cognitive and Developmental Systems, vol. 10, no. 4, pp. 1035-1042, DOI: 10.1109/TCDS.2017.2731361.

A conceptual model for emergence with downward causation is developed. In addition, the necessary and sufficient conditions are identified for a phenomenon to be considered emergent in a complex system. It is then applied to symbol emergence in robots. This paper is motivated by the usefulness of emergence to explain a wide variety of phenomena in systems, and cognition in natural and artificial creatures. Downward causation is shown to be a critical requirement for potentially emergent phenomena to be considered actually emergent. Models of emergence with and without downward causation are described and how weak emergence can include downward causation. A process flow is developed for distinguishing emergence from nonemergence based upon the application of reductionism and detection of downward causation. Examples are shown for applying the necessary and sufficient conditions to filter out actually emergent phenomena from nonemergent ones. Finally, this approach for detecting emergence is applied to complex projects and symbol emergence in robots.

A cognitive architecture for self-development in robots that interact with humans, with a nice state-of-the-art of robot cognitive architectures

C. Moulin-Frier et al., DAC-h3: A Proactive Robot Cognitive Architecture to Acquire and Express Knowledge About the World and the Self, IEEE Transactions on Cognitive and Developmental Systems, vol. 10, no. 4, pp. 1005-1022, DOI: 10.1109/TCDS.2017.2754143.

This paper introduces a cognitive architecture for a humanoid robot to engage in a proactive, mixed-initiative exploration and manipulation of its environment, where the initiative can originate from both human and robot. The framework, based on a biologically grounded theory of the brain and mind, integrates a reactive interaction engine, a number of state-of-the-art perceptual and motor learning algorithms, as well as planning abilities and an autobiographical memory. The architecture as a whole drives the robot behavior to solve the symbol grounding problem, acquire language capabilities, execute goal-oriented behavior, and express a verbal narrative of its own experience in the world. We validate our approach in human-robot interaction experiments with the iCub humanoid robot, showing that the proposed cognitive architecture can be applied in real time within a realistic scenario and that it can be used with naive users.

A ROS module that improves real-time aspects of network communication among distributed ROS machines, and a nice analysis of wireless network characteristics and limitations

Danilo Tardioli, Ramviyas Parasuraman, Petter Ögren, Pound: A multi-master ROS node for reducing delay and jitter in wireless multi-robot networks, Robotics and Autonomous Systems, Volume 111, 2019, Pages 73-87, DOI: 10.1016/j.robot.2018.10.009.

The Robot Operating System (ROS) is a popular and widely used software framework for building robotics systems. With the growth of its popularity, it has started to be used in multi-robot systems as well. However, the TCP connections that the platform relies on for connecting the so-called ROS nodes presents several issues regarding limited-bandwidth, delays, and jitter, when used in wireless multi-hop networks. In this paper, we present a thorough analysis of the problem and propose a new ROS node called Pound to improve the wireless communication performance by reducing delay and jitter in data exchanges, especially in multi-hop networks. Pound allows the use of multiple ROS masters (roscores), features data compression, and importantly, introduces a priority scheme that allows favoring more important flows over less important ones. We compare Pound to the state-of-the-art solutions through extensive experiments and show that it performs equally well, or better in all the test cases, including a control-over-network example.

Interesting use of RL (deep-RL) for detection – reformulation of detection as a sequential decision process

F. Ghesu et al., Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 1, pp. 176-189, DOI: 10.1109/TPAMI.2017.2782687.

Robust and fast detection of anatomical structures is a prerequisite for both diagnostic and interventional medical image analysis. Current solutions for anatomy detection are typically based on machine learning techniques that exploit large annotated image databases in order to learn the appearance of the captured anatomy. These solutions are subject to several limitations, including the use of suboptimal feature engineering techniques and most importantly the use of computationally suboptimal search-schemes for anatomy detection. To address these issues, we propose a method that follows a new paradigm by reformulating the detection problem as a behavior learning task for an artificial agent. We couple the modeling of the anatomy appearance and the object search in a unified behavioral framework, using the capabilities of deep reinforcement learning and multi-scale image analysis. In other words, an artificial agent is trained not only to distinguish the target anatomical object from the rest of the body but also how to find the object by learning and following an optimal navigation path to the target object in the imaged volumetric space. We evaluated our approach on 1487 3D-CT volumes from 532 patients, totaling over 500,000 image slices and show that it significantly outperforms state-of-the-art solutions on detecting several anatomical structures with no failed cases from a clinical acceptance perspective, while also achieving a 20-30 percent higher detection accuracy. Most importantly, we improve the detection-speed of the reference methods by 2-3 orders of magnitude, achieving unmatched real-time performance on large 3D-CT scans.

A novel method for compacting a continuous high-dimensional value function for MDPs

Gorodetsky, A., Karaman, S., & Marzouk, Y., High-dimensional stochastic optimal control using continuous tensor decompositions, The International Journal of Robotics Research, 37(2–3), 340–377, DOI: 10.1177/0278364917753994.

Motion planning and control problems are embedded and essential in almost all robotics applications. These problems are often formulated as stochastic optimal control problems and solved using dynamic programming algorithms. Unfortunately, most existing algorithms that guarantee convergence to optimal solutions suffer from the curse of dimensionality: the run time of the algorithm grows exponentially with the dimension of the state space of the system. We propose novel dynamic programming algorithms that alleviate the curse of dimensionality in problems that exhibit certain low-rank structure. The proposed algorithms are based on continuous tensor decompositions recently developed by the authors. Essentially, the algorithms represent high-dimensional functions (e.g. the value function) in a compressed format, and directly perform dynamic programming computations (e.g. value iteration, policy iteration) in this format. Under certain technical assumptions, the new algorithms guarantee convergence towards optimal solutions with arbitrary precision. Furthermore, the run times of the new algorithms scale polynomially with the state dimension and polynomially with the ranks of the value function. This approach realizes substantial computational savings in “compressible” problem instances, where value functions admit low-rank approximations. We demonstrate the new algorithms in a wide range of problems, including a simulated six-dimensional agile quadcopter maneuvering example and a seven-dimensional aircraft perching example. In some of these examples, we estimate computational savings of up to 10 orders of magnitude over standard value iteration algorithms. We further demonstrate the algorithms running in real time on board a quadcopter during a flight experiment under motion capture.

A novel paradigm for motion planning based on probabilistic inference

Mukadam, M., Dong, J., Yan, X., Dellaert, F., & Boots, B. , Continuous-time Gaussian process motion planning via probabilistic inference, The International Journal of Robotics Research, 37(11), 1319–1340, DOI: 10.1177/0278364918790369.

We introduce a novel formulation of motion planning, for continuous-time trajectories, as probabilistic inference. We first show how smooth continuous-time trajectories can be represented by a small number of states using sparse Gaussian process (GP) models. We next develop an efficient gradient-based optimization algorithm that exploits this sparsity and GP interpolation. We call this algorithm the Gaussian Process Motion Planner (GPMP). We then detail how motion planning problems can be formulated as probabilistic inference on a factor graph. This forms the basis for GPMP2, a very efficient algorithm that combines GP representations of trajectories with fast, structure-exploiting inference via numerical optimization. Finally, we extend GPMP2 to an incremental algorithm, iGPMP2, that can efficiently replan when conditions change. We benchmark our algorithms against several sampling-based and trajectory optimization-based motion planning algorithms on planning problems in multiple environments. Our evaluation reveals that GPMP2 is several times faster than previous algorithms while retaining robustness. We also benchmark iGPMP2 on replanning problems, and show that it can find successful solutions in a fraction of the time required by GPMP2 to replan from scratch.

Interesting close-loop detection for robot SLAM that only uses odometry and topology

Rohou, S., Franek, P., Aubry, C., & Jaulin, L. , Proving the existence of loops in robot trajectories, The International Journal of Robotics Research, DOI: 10.1177/0278364918808367.

In this paper we present a reliable method to verify the existence of loops along the uncertain trajectory of a robot, based on proprioceptive measurements only, within a bounded-error context. The loop closure detection is one of the key points in simultaneous localization and mapping (SLAM) methods, especially in homogeneous environments with difficult scenes recognitions. The proposed approach is generic and could be coupled with conventional SLAM algorithms to reliably reduce their computing burden, thus improving the localization and mapping processes in the most challenging environments such as unexplored underwater extents. To prove that a robot performed a loop whatever the uncertainties in its evolution, we employ the notion of topological degree that originates in the field of differential topology. We show that a verification tool based on the topological degree is an optimal method for proving robot loops. This is demonstrated both on datasets from real missions involving autonomous underwater vehicles and by a mathematical discussion.

Perpetual power for small robots in a swarm

Farshad Arvin, Simon Watson, Ali Emre Turgut, Jose Espinosa, Tomáš Krajník, Barry Lennox, Perpetual Robot Swarm: Long-Term Autonomy of Mobile Robots Using On-the-fly Inductive Charging, Journal of Intelligent & Robotic Systems, December 2018, Volume 92, Issue 3–4, pp 395–412, DOI: 10.1007/s10846-017-0673-8.

Swarm robotics studies the intelligent collective behaviour emerging from long-term interactions of large number of simple robots. However, maintaining a large number of robots operational for long time periods requires significant battery capacity, which is an issue for small robots. Therefore, re-charging systems such as automated battery-swapping stations have been implemented. These systems require that the robots interrupt, albeit shortly, their activity, which influences the swarm behaviour. In this paper, a low-cost on-the-fly wireless charging system, composed of several charging cells, is proposed for use in swarm robotic research studies. To determine the system’s ability to support perpetual swarm operation, a probabilistic model that takes into account the swarm size, robot behaviour and charging area configuration, is outlined. Based on the model, a prototype system with 12 charging cells and a small mobile robot, Mona, was developed. A series of long-term experiments with different arenas and behavioural configurations indicated the model’s accuracy and demonstrated the system’s ability to support perpetual operation of multi-robotic system.