Category Archives: Cognitive Sciences

Action selection strategy for model-free RL based on neurophysiology

D. Wang, S. Chen, Y. Hu, L. Liu and H. Wang, Behavior Decision of Mobile Robot With a Neurophysiologically Motivated Reinforcement Learning Model, IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 1, pp. 219-233, March 2022 DOI: 10.1109/TCDS.2020.3035778.

Online model-free reinforcement learning (RL) approaches play a crucial role in coping with the real-world applications, such as the behavioral decision making in robotics. How to balance the exploration and exploitation processes is a central problem in RL. A balanced ratio of exploration/exploitation has a great influence on the total learning time and the quality of the learned strategy. Therefore, various action selection policies have been presented to obtain a balance between the exploration and exploitation procedures. However, these approaches are rarely, automatically, and dynamically regulated to the environment variations. One of the most amazing self-adaptation mechanisms in animals is their capacity to dynamically switch between exploration and exploitation strategies. This article proposes a novel neurophysiologically motivated model which simulates the role of medial prefrontal cortex (MPFC) and lateral prefrontal cortex (LPFC) in behavior decision. The sensory input is transmitted to the MPFC, then the ventral tegmental area (VTA) receives a reward and calculates a dopaminergic reinforcement signal, and the feedback categorization neurons in anterior cingulate cortex (ACC) calculate the vigilance according to the dopaminergic reinforcement signal. Then the vigilance is transformed to LPFC to regulate the exploration rate, finally the exploration rate is transmitted to thalamus to calculate the corresponding action probability. This action selection mechanism is introduced to the actor\u2013critic model of the basal ganglia, combining with the cerebellum model based on the developmental network to construct a new hybrid neuromodulatory model to select the action of the agent. Both the simulation comparison with other four traditional action selection policies and the physical experiment results demonstrate the potential of the proposed neuromodulatory model in action selection.

The brain as a communication network

John D. Mollon, Chie Takahashi, Marina V. Danilova, What kind of network is the brain? Trends in Cognitive Sciences, Volume 26, Issue 4, 2022, Pages 312-324 DOI: 10.1016/j.tics.2022.01.007.

The different areas of the cerebral cortex are linked by a network of white matter, comprising the myelinated axons of pyramidal cells. Is this network a neural net, in the sense that representations of the world are embodied in the structure of the net, its pattern of nodes, and connections? Or is it a communications network, where the same physical substrate carries different information from moment to moment? This question is part of the larger question of whether the brain is better modeled by connectionism or by symbolic artificial intelligence (AI), but we review it in the specific context of the psychophysics of stimulus comparison and the format and protocol of information transmission over the long-range tracts of the brain.

An hypothesis that human perception can only be done in real-time if prediction mechanisms go ahead and save the gap caused by the processing of inputs, which actually cannot be done in real-time (plus further post-processing and adjustment of past perceptions)

Hinze Hogendoorn, Perception in real-time: predicting the present, reconstructing the past, Trends in Cognitive Sciences, Volume 26, Issue 2, 2022 DOI: 10.1016/j.tics.2021.11.003.

We feel that we perceive events in the environment as they unfold in real-time. However, this intuitive view of perception is impossible to implement in the nervous system due to biological constraints such as neural transmission delays. I propose a new way of thinking about real-time perception: at any given moment, instead of representing a single timepoint, perceptual mechanisms represent an entire timeline. On this timeline, predictive mechanisms predict ahead to compensate for delays in incoming sensory input, and reconstruction mechanisms retroactively revise perception when those predictions do not come true. This proposal integrates and extends previous work to address a crucial gap in our understanding of a fundamental aspect of our everyday life: the experience of perceiving the present.

Defining and measuring mathematically the level of knowledge, ignorance and uncertainty

Fujun Hou, Evangelos Triantaphyllou, Juri Yanase, Knowledge, ignorance, and uncertainty: An investigation from the perspective of some differential equations, Expert Systems with Applications, Volume 191, 2022 DOI: 10.1016/j.eswa.2021.116325.

People use knowledge on several cognitive tasks such as when they recognize objects, rank entities such as the alternatives in multi-criteria decision making, or for classification tasks of decision making / expert / intelligent systems. When people have sufficient relevant knowledge, they can make well-distinctive assessments among entities. Otherwise, they may exhibit some uncertainty. This paper establishes two differential equations, of which one is for the interaction between the knowledge level and the uncertainty level, and the other is for the interaction between the ignorance level and the uncertainty level. By solving these two differential equations under certain boundary conditions, one can derive that the proposed knowledge level indicator is equivalent to Wierman’s knowledge granularity measure up to a constant (exactly, ln2). Moreover, the knowledge level indicator and the ignorance level indicator are found to be in a complementary relationship with each other. That is, more knowledge implies less ignorance, and vice-versa. The results of this study bridge a critical gap that exists in the understanding of the concepts of knowledge and ignorance.

A nice survey on knowledge graphs for representing, well, knowledge, focused on explainability of AI, but whatever, they are interesting for many more things

Ilaria Tiddi, Stefan Schlobach, Knowledge graphs as tools for explainable machine learning: A survey, Artificial Intelligence, Volume 302, 2022 DOI: 10.1016/j.artint.2021.103627.

This paper provides an extensive overview of the use of knowledge graphs in the context of Explainable Machine Learning. As of late, explainable AI has become a very active field of research by addressing the limitations of the latest machine learning solutions that often provide highly accurate, but hardly scrutable and interpretable decisions. An increasing interest has also been shown in the integration of Knowledge Representation techniques in Machine Learning applications, mostly motivated by the complementary strengths and weaknesses that could lead to a new generation of hybrid intelligent systems. Following this idea, we hypothesise that knowledge graphs, which naturally provide domain background knowledge in a machine-readable format, could be integrated in Explainable Machine Learning approaches to help them provide more meaningful, insightful and trustworthy explanations. Using a systematic literature review methodology we designed an analytical framework to explore the current landscape of Explainable Machine Learning. We focus particularly on the integration with structured knowledge at large scale, and use our framework to analyse a variety of Machine Learning domains, identifying the main characteristics of such knowledge-based, explainable systems from different perspectives. We then summarise the strengths of such hybrid systems, such as improved understandability, reactivity, and accuracy, as well as their limitations, e.g. in handling noise or extracting knowledge efficiently. We conclude by discussing a list of open challenges left for future research.

A general model of abstraction of graphs

Christer Bäckström, Peter Jonsson, A framework for analysing state-abstraction methods, Artificial Intelligence, Volume 302, 2022 DOI: 10.1016/j.artint.2021.103608.

Abstraction has been used in combinatorial search and action planning from the very beginning of AI. Many different methods and formalisms for state abstraction have been proposed in the literature, but they have been designed from various points of view and with varying purposes. Hence, these methods have been notoriously difficult to analyse and compare in a structured way. In order to improve upon this situation, we present a coherent and flexible framework for modelling abstraction (and abstraction-like) methods based on graph transformations. The usefulness of the framework is demonstrated by applying it to problems in both search and planning. We model six different abstraction methods from the planning literature and analyse their intrinsic properties. We show how to capture many search abstraction concepts (such as avoiding backtracking between levels) and how to put them into a broader context. We also use the framework to identify and investigate connections between refinement and heuristics—two concepts that have usually been considered as unrelated in the literature. This provides new insights into various topics, e.g. Valtorta’s theorem and spurious states. We finally extend the framework with composition of transformations to accommodate for abstraction hierarchies, and other multi-level concepts. We demonstrate the latter by modelling and analysing the merge-and-shrink abstraction method.

On how the exploitation-exploration dicotomy shifts to exploitation as humans get older

R. Nathan Spreng, Gary R. Turner, From exploration to exploitation: a shifting mental mode in late life development, Trends in Cognitive Sciences, Volume 25, Issue 12, 2021 DOI: 10.1016/j.tics.2021.09.0010.

Changes in cognition, affect, and brain function combine to promote a shift in the nature of mentation in older adulthood, favoring exploitation of prior knowledge over exploratory search as the starting point for thought and action. Age-related exploitation biases result from the accumulation of prior knowledge, reduced cognitive control, and a shift toward affective goals. These are accompanied by changes in cortical networks, as well as attention and reward circuits. By incorporating these factors into a unified account, the exploration-to-exploitation shift offers an integrative model of cognitive, affective, and brain aging. Here, we review evidence for this model, identify determinants and consequences, and survey the challenges and opportunities posed by an exploitation-biased mental mode in later life.

Analysis of the under-optimality of path lengths when path planning is carried out on a grid instead of the continuous world

James P. Bailey, Alex Nash, Craig A. Tovey, Sven Koenig, Path-length analysis for grid-based path planning, Artificial Intelligence, Volume 301, 2021, DOI: 10.1016/j.artint.2021.103560.

In video games and robotics, one often discretizes a continuous 2D environment into a regular grid with blocked and unblocked cells and then finds shortest paths for the agents on the resulting grid graph. Shortest grid paths, of course, are not necessarily true shortest paths in the continuous 2D environment. In this article, we therefore study how much longer a shortest grid path can be than a corresponding true shortest path on all regular grids with blocked and unblocked cells that tessellate continuous 2D environments. We study 5 different vertex connectivities that result from both different tessellations and different definitions of the neighbors of a vertex. Our path-length analysis yields either tight or asymptotically tight worst-case bounds in a unified framework. Our results show that the percentage by which a shortest grid path can be longer than a corresponding true shortest path decreases as the vertex connectivity increases. Our path-length analysis is topical because it determines the largest path-length reduction possible for any-angle path-planning algorithms (and thus their benefit), a class of path-planning algorithms in artificial intelligence and robotics that has become popular.

Building explanations for AI plans by modifying user’s models to make those plans optimal within them

Sarath Sreedharan, Tathagata Chakraborti, Subbarao Kambhampati, Foundations of explanations as model reconciliation, Artificial Intelligence, Volume 301,
2021, DOI: 10.1016/j.artint.2021.103558.

Past work on plan explanations primarily involved the AI system explaining the correctness of its plan and the rationale for its decision in terms of its own model. Such soliloquy is wholly inadequate in most realistic scenarios where users have domain and task models that differ from that used by the AI system. We posit that the explanations are best studied in light of these differing models. In particular, we show how explanation can be seen as a \u201cmodel reconciliation problem\u201d (MRP), where the AI system in effect suggests changes to the user’s mental model so as to make its plan be optimal with respect to that changed user model. We will study the properties of such explanations, present algorithms for automatically computing them, discuss relevant extensions to the basic framework, and evaluate the performance of the proposed algorithms both empirically and through controlled user studies.

On how physical movements shape the perception of time

Rose De Kock, Keri Anne Gladhill, Minaz Numa Ali, Wilsaan Mychal Joiner, Martin Wiener, How movements shape the perception of time, Trends in Cognitive Sciences, Volume 25, Issue 11, 2021, Pages 950-963 DOI: 10.1016/j.tics.2021.08.002.

In order to keep up with a changing environment, mobile organisms must be capable of deciding both where and when to move. This precision necessitates a strong sense of time, as otherwise we would fail in many of our movement goals. Yet, despite this intrinsic link, only recently have researchers begun to understand how these two features interact. Primarily, two effects have been observed: movements can bias time estimates, but they can also make them more precise. Here we review this literature and propose that both effects can be explained by a Bayesian cue combination framework, in which movement itself affords the most precise representation of time, which can influence perception in either feedforward or active sensing modes.