Tag Archives: Symbolism/subsymbolism

A survey on neurosymbolic RL and planning

K. Acharya, W. Raza, C. Dourado, A. Velasquez and H. H. Song, Neurosymbolic Reinforcement Learning and Planning: A Survey, IEEE Transactions on Artificial Intelligence, vol. 5, no. 5, pp. 1939-1953, May 2024 DOI: 10.1109/TAI.2023.3311428.

The area of neurosymbolic artificial intelligence (Neurosymbolic AI) is rapidly developing and has become a popular research topic, encompassing subfields, such as neurosymbolic deep learning and neurosymbolic reinforcement learning (Neurosymbolic RL). Compared with traditional learning methods, Neurosymbolic AI offers significant advantages by simplifying complexity and providing transparency and explainability. Reinforcement learning (RL), a long-standing artificial intelligence (AI) concept that mimics human behavior using rewards and punishment, is a fundamental component of Neurosymbolic RL, a recent integration of the two fields that has yielded promising results. The aim of this article is to contribute to the emerging field of Neurosymbolic RL by conducting a literature survey. Our evaluation focuses on the three components that constitute Neurosymbolic RL: neural, symbolic, and RL. We categorize works based on the role played by the neural and symbolic parts in RL, into three taxonomies: learning for reasoning, reasoning for learning, and learning–reasoning. These categories are further divided into subcategories based on their applications. Furthermore, we analyze the RL components of each research work, including the state space, action space, policy module, and RL algorithm. In addition, we identify research opportunities and challenges in various applications within this dynamic field.

On the relations between symbolic and subsymbolic systems in AI

Giuseppe Marra, Sebastijan Duman\u010di\u0107, Robin Manhaeve, Luc De Raedt, From statistical relational to neurosymbolic artificial intelligence: A survey, Artificial Intelligence, Volume 328, 2024 DOI: 10.1016/j.artint.2023.104062.

This survey explores the integration of learning and reasoning in two different fields of artificial intelligence: neurosymbolic and statistical relational artificial intelligence. Neurosymbolic artificial intelligence (NeSy) studies the integration of symbolic reasoning and neural networks, while statistical relational artificial intelligence (StarAI) focuses on integrating logic with probabilistic graphical models. This survey identifies seven shared dimensions between these two subfields of AI. These dimensions can be used to characterize different NeSy and StarAI systems. They are concerned with (1) the approach to logical inference, whether model or proof-based; (2) the syntax of the used logical theories; (3) the logical semantics of the systems and their extensions to facilitate learning; (4) the scope of learning, encompassing either parameter or structure learning; (5) the presence of symbolic and subsymbolic representations; (6) the degree to which systems capture the original logic, probabilistic, and neural paradigms; and (7) the classes of learning tasks the systems are applied to. By positioning various NeSy and StarAI systems along these dimensions and pointing out similarities and differences between them, this survey contributes fundamental concepts for understanding the integration of learning and reasoning.

On the existence of multiple fundamental “languages” in the brain that use discrete symbols and a few basic structures

Stanislas Dehaene, Fosca Al Roumi, Yair Lakretz, Samuel Planton, Mathias Sabl�-Meyer, Symbols and mental programs: a hypothesis about human singularity, Trends in Cognitive Sciences, Volume 26, Issue 9, 2022, Pages 751-766 DOI: 10.1016/j.tics.2022.06.010.

Natural language is often seen as the single factor that explains the cognitive singularity of the human species. Instead, we propose that humans possess multiple internal languages of thought, akin to computer languages, which encode and compress structures in various domains (mathematics, music, shape\u2026). These languages rely on cortical circuits distinct from classical language areas. Each is characterized by: (i) the discretization of a domain using a small set of symbols, and (ii) their recursive composition into mental programs that encode nested repetitions with variations. In various tasks of elementary shape or sequence perception, minimum description length in the proposed languages captures human behavior and brain activity, whereas non-human primate data are captured by simpler nonsymbolic models. Our research argues in favor of discrete symbolic models of human thought.

How to make that a symbol becomes related to things on which it is not grounded, and a nice introduction to the symbolist/subsymbolist dilemma

Veale, Tony and Al-Najjar, Khalid (2016). Grounded for life: creative symbol-grounding for lexical invention. Connection Science 28(2). DOI: 10.1080/09540091.2015.1130025

One of the challenges of linguistic creativity is to use words in a way that is novel and striking and even whimsical, to convey meanings that remain stubbornly grounded in the very same world of familiar experiences as serves to anchor the most literal and unimaginative language. The challenge remains unmet by systems that merely shuttle or arrange words to achieve novel arrangements without concern as to how those arrangements are to spur the processes of meaning construction in a listener. In this paper we explore a problem of lexical invention that cannot be solved without a model ? explicit or implicit ? of the perceptual grounding of language: the invention of apt new names for colours. To solve this problem here we shall call upon the notion of a linguistic readymade, a phrase that is wrenched from its original context of use to be given new meaning and new resonance in new settings. To ensure that our linguistic readymades ? which owe a great deal to Marcel Duchamp’s notion of found art ? are anchored in a consensus model of perception, we introduce the notion of a lexicalised colour stereotype.