Tag Archives: Live Rl

Live-RL enhancement / reduction of unsafe situations by reducing the transition possibility of unsafe actions

Serhat Duman, Hamdi Tolga Kahraman, Yusuf Sonmez, Ugur Guvenc, Mehmet Kati, Sefa Aras, A powerful meta-heuristic search algorithm for solving global optimization and real-world solar photovoltaic parameter estimation problems, Engineering Applications of Artificial Intelligence, Volume 111, 2022 DOI: 10.1016/j.engappai.2022.104763.

The teaching-learning-based artificial bee colony (TLABC) is a new hybrid swarm-based metaheuristic search algorithm. It combines the exploitation of the teaching learning-based optimization (TLBO) with the exploration of the artificial bee colony (ABC). With the hybridization of these two nature-inspired swarm intelligence algorithms, a robust method has been proposed to solve global optimization problems. However, as with swarm-based algorithms, with the TLABC method, it is a great challenge to effectively simulate the selection process. Fitness-distance balance (FDB) is a powerful recently developed method to effectively imitate the selection process in nature. In this study, the three search phases of the TLABC algorithm were redesigned using the FDB method. In this way, the FDB-TLABC algorithm, which imitates nature more effectively and has a robust search performance, was developed. To investigate the exploitation, exploration, and balanced search capabilities of the proposed algorithm, it was tested on standard and complex benchmark suites (Classic, IEEE CEC 2014, IEEE CEC 2017, and IEEE CEC 2020). In order to verify the performance of the proposed FDB-TLABC for global optimization problems and in the photovoltaic parameter estimation problem (a constrained real-world engineering problem) a very comprehensive and qualified experimental study was carried out according to IEEE CEC standards. Statistical analysis results confirmed that the proposed FDB-TLABC provided the best optimum solution and yielded a superior performance compared to other optimization methods.

Including a safety procedure in RL to avoid physical agent problems while learning

Kim Peter Wabersich, Melanie N. Zeilinger, A predictive safety filter for learning-based control of constrained nonlinear dynamical systems, . Automatica, Volume 129, 2021 DOI: 10.1016/j.automatica.2021.109597.

The transfer of reinforcement learning (RL) techniques into real-world applications is challenged by safety requirements in the presence of physical limitations. Most RL methods, in particular the most popular algorithms, do not support explicit consideration of state and input constraints. In this paper, we address this problem for nonlinear systems with continuous state and input spaces by introducing a predictive safety filter, which is able to turn a constrained dynamical system into an unconstrained safe system and to which any RL algorithm can be applied ‘out-of-the-box’. The predictive safety filter receives the proposed control input and decides, based on the current system state, if it can be safely applied to the real system, or if it has to be modified otherwise. Safety is thereby established by a continuously updated safety policy, which is based on a model predictive control formulation using a data-driven system model and considering state and input dependent uncertainties.