Tag Archives: Heuristic Optimization

A PID-based global optimization algorithm

Yuansheng Gao, PID-based search algorithm: A novel metaheuristic algorithm based on PID algorithm, Expert Systems with Applications, Volume 232, 2023, DOI: 10.1016/j.eswa.2023.120886.

In this paper, a metaheuristic algorithm called PID-based search algorithm (PSA) is proposed for global optimization. The algorithm is based on an incremental PID algorithm that converges the entire population to an optimal state by continuously adjusting the system deviations. PSA is mathematically modeled and implemented to achieve optimization in a wide range of search spaces. PSA is used to solve CEC2017 benchmark test functions and six constrained problems. The optimization performance of PSA is verified by comparing it with seven metaheuristics proposed in recent years. The Kruskal-Wallis, Holm and Friedman tests verified the superiority of PSA in terms of statistical significance. The results show that PSA can be better balanced exploration and exploitation with strong optimization capability. Source codes�of PSA are publicly available at https://ww2.mathworks.cn/matlabcentral/fileexchange/131534-pid-based-search-algorithm.

Interesting summary of photovoltaic modelling

Serhat Duman, Hamdi Tolga Kahraman, Yusuf Sonmez, Ugur Guvenc, Mehmet Kati, Sefa Aras, A powerful meta-heuristic search algorithm for solving global optimization and real-world solar photovoltaic parameter estimation problems, Engineering Applications of Artificial Intelligence, Volume 111, 2022 DOI: 10.1016/j.engappai.2022.104763.

The teaching-learning-based artificial bee colony (TLABC) is a new hybrid swarm-based metaheuristic search algorithm. It combines the exploitation of the teaching learning-based optimization (TLBO) with the exploration of the artificial bee colony (ABC). With the hybridization of these two nature-inspired swarm intelligence algorithms, a robust method has been proposed to solve global optimization problems. However, as with swarm-based algorithms, with the TLABC method, it is a great challenge to effectively simulate the selection process. Fitness-distance balance (FDB) is a powerful recently developed method to effectively imitate the selection process in nature. In this study, the three search phases of the TLABC algorithm were redesigned using the FDB method. In this way, the FDB-TLABC algorithm, which imitates nature more effectively and has a robust search performance, was developed. To investigate the exploitation, exploration, and balanced search capabilities of the proposed algorithm, it was tested on standard and complex benchmark suites (Classic, IEEE CEC 2014, IEEE CEC 2017, and IEEE CEC 2020). In order to verify the performance of the proposed FDB-TLABC for global optimization problems and in the photovoltaic parameter estimation problem (a constrained real-world engineering problem) a very comprehensive and qualified experimental study was carried out according to IEEE CEC standards. Statistical analysis results confirmed that the proposed FDB-TLABC provided the best optimum solution and yielded a superior performance compared to other optimization methods.