Tag Archives: Psychological Time

Modelling the perception of time in the human brain through RL with eligibility traces

I. Louren�o, R. Mattila, R. Ventura and B. Wahlberg, A Biologically Inspired Computational Model of Time Perception, IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 2, pp. 258-268, June 2022 DOI: 10.1109/TCDS.2021.3120301.

Time perception\u2014how humans and animals perceive the passage of time\u2014forms the basis for important cognitive skills, such as decision making, planning, and communication. In this work, we propose a framework for examining the mechanisms responsible for time perception. We first model neural time perception as a combination of two known timing sources: internal neuronal mechanisms and external (environmental) stimuli, and design a decision-making framework to replicate them. We then implement this framework in a simulated robot. We measure the robot\u2019s success on a temporal discrimination task originally performed by mice to evaluate their capacity to exploit temporal knowledge. We conclude that the robot is able to perceive time similarly to animals when it comes to their intrinsic mechanisms of interpreting time and performing time-aware actions. Next, by analyzing the behavior of agents equipped with the framework, we propose an estimator to infer characteristics of the timing mechanisms intrinsic to the agents. In particular, we show that from their empirical action probability distribution, we are able to estimate parameters used for perceiving time. Overall, our work shows promising results when it comes to drawing conclusions regarding some of the characteristics present in biological timing mechanisms.

NOTE: See also H. Basgol, I. Ayhan and E. Ugur, “Time Perception: A Review on Psychological, Computational, and Robotic Models,” in IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 2, pp. 301-315, June 2022, doi: 10.1109/TCDS.2021.3059045.

On how physical movements shape the perception of time

Rose De Kock, Keri Anne Gladhill, Minaz Numa Ali, Wilsaan Mychal Joiner, Martin Wiener, How movements shape the perception of time, Trends in Cognitive Sciences, Volume 25, Issue 11, 2021, Pages 950-963 DOI: 10.1016/j.tics.2021.08.002.

In order to keep up with a changing environment, mobile organisms must be capable of deciding both where and when to move. This precision necessitates a strong sense of time, as otherwise we would fail in many of our movement goals. Yet, despite this intrinsic link, only recently have researchers begun to understand how these two features interact. Primarily, two effects have been observed: movements can bias time estimates, but they can also make them more precise. Here we review this literature and propose that both effects can be explained by a Bayesian cue combination framework, in which movement itself affords the most precise representation of time, which can influence perception in either feedforward or active sensing modes.

On how psychological time emerges from execution of actions in the environment

Jennifer T. Coull, Sylvie Droit-Volet, Explicit Understanding of Duration Develops Implicitly through Action, Trends in Cognitive Sciences, Volume 22, Issue 10, 2018, Pages 923-937, DOI: 10.1016/j.tics.2018.07.011.

Time is relative. Changes in cognitive state or sensory context make it appear to speed up or slow down. Our perception of time is a rather fragile mental construct derived from the way events in the world are processed and integrated in memory. Nevertheless, the slippery concept of time can be structured by draping it over more concrete functional scaffolding. Converging evidence from developmental studies of children and neuroimaging in adults indicates that we can represent time in spatial or motor terms. We hypothesise that explicit processing of time is mediated by motor structures of the brain in adulthood because we implicitly learn about time through action during childhood. Future challenges will be to harness motor or spatial representations of time to optimise behaviour, potentially for therapeutic gain.

A nice introduction to psychological time

Lindsey Drayton, Moran Furman, Thy Mind, Thy Brain and Time, Trends in Cognitive Sciences, olume 22, Issue 10, 2018, Pages 841-843 DOI: 10.1016/j.tics.2018.08.007.

The passage of time has fascinated the human mind for millennia. Tools for measuring time emerged early in civilization: lunar calendars appear in the archeological record as far back as 10 000 years ago and water clocks some 6000 years ago. Later technological innovations such as mechanical clocks, and more recently atomic clocks, have allowed the tracking of time with ever-increasing precision. And yet, arguably, the most sophisticated ‘time piece’ is the brain. Our brains can not only track the duration and succession of events, but they can also coordinate complex motor movements at striking levels of precision; communicate effectively by generating and interpreting sounds and speech; determine how to maximize rewards over time in the face of uncertainty; reflect upon the past; plan for the future; respond to temporal regularities and irregularities in the environment; and adapt to change in temporal scales that range from millisecond resolution up to evolutionary processes spanning millions of years.