Tag Archives: Distributed Computation

Increasing exploration when the agent performs worse, decreasing when performing better, in the context of DQN for distributing computation among cloud and edge servers, also dealing with hybridization of RL with Fuzzy

Do Bao Son, Ta Huu Binh, Hiep Khac Vo, Binh Minh Nguyen, Huynh Thi Thanh Binh, Shui Yu, Value-based reinforcement learning approaches for task offloading in Delay Constrained Vehicular Edge Computing, Engineering Applications of Artificial Intelligence, Volume 113, 2022 DOI: 10.1016/j.engappai.2022.104898.

In the age of booming information technology, human-being has witnessed the need for new paradigms with both high computational capability and low latency. A potential solution is Vehicular Edge Computing (VEC). Previous work proposed a Fuzzy Deep Q-Network in Offloading scheme (FDQO) that combines Fuzzy rules and Deep Q-Network (DQN) to improve DQN\u2019s early performance by using Fuzzy Controller (FC). However, we notice that frequent usage of FC can hinder the future growth performance of model. One way to overcome this issue is to remove Fuzzy Controller entirely. We introduced an algorithm called baseline DQN (b-DQN), represented by its two variants Static baseline DQN (Sb-DQN) and Dynamic baseline DQN (Db-DQN), to modify the exploration rate base on the average rewards of closest observations. Our findings confirm that these baseline DQN algorithms surpass traditional DQN models in terms of average Quality of Experience (QoE) in 100 time slots by about 6%, but still suffer from poor early performance (such as in the first 5 time slots). Here, we introduce baseline FDQO (b-FDQO). This algorithm has a strategy to modify the Fuzzy Logic usage instead of removing it entirely while still observing the rewards to modify the exploration rate. It brings a higher average QoE in the first 5 time slots compared to other non-fuzzy-logic algorithms by at least 55.12%, prevent the model from getting too bad result over all time slots, while having the late performance as good as that of b-DQN.

Interesting account of the “computation/communication” binom in distributed computing, particularly in distributed optimization

A. S. Berahas, R. Bollapragada, N. S. Keskar and E. Wei, Balancing Communication and Computation in Distributed Optimization. IEEE Transactions on Automatic Control, vol. 64, no. 8, pp. 3141-3155, Aug. 2019 DOI: 10.1109/TAC.2018.2880407.

Methods for distributed optimization have received significant attention in recent years owing to their wide applicability in various domains including machine learning, robotics, and sensor networks. A distributed optimization method typically consists of two key components: communication and computation. More specifically, at every iteration (or every several iterations) of a distributed algorithm, each node in the network requires some form of information exchange with its neighboring nodes (communication) and the computation step related to a (sub)-gradient (computation). The standard way of judging an algorithm via only the number of iterations overlooks the complexity associated with each iteration. Moreover, various applications deploying distributed methods may prefer a different composition of communication and computation. Motivated by this discrepancy, in this paper, we propose an adaptive cost framework that adjusts the cost measure depending on the features of various applications. We present a flexible algorithmic framework, where communication and computation steps are explicitly decomposed to enable algorithm customization for various applications. We apply this framework to the well-known distributed gradient descent (DGD) method, and show that the resulting customized algorithms, which we call DGDt, NEAR-DGDt, and NEAR-DGD+, compare favorably to their base algorithms, both theoretically and empirically. The proposed NEAR-DGD+ algorithm is an exact first-order method where the communication and computation steps are nested, and when the number of communication steps is adaptively increased, the method converges to the optimal solution. We test the performance and illustrate the flexibility of the methods, as well as practical variants, on quadratic functions and classification problems that arise in machine learning, in terms of iterations, gradient evaluations, communications, and the proposed cost framework.