The brain as a communication network

John D. Mollon, Chie Takahashi, Marina V. Danilova, What kind of network is the brain? Trends in Cognitive Sciences, Volume 26, Issue 4, 2022, Pages 312-324 DOI: 10.1016/j.tics.2022.01.007.

The different areas of the cerebral cortex are linked by a network of white matter, comprising the myelinated axons of pyramidal cells. Is this network a neural net, in the sense that representations of the world are embodied in the structure of the net, its pattern of nodes, and connections? Or is it a communications network, where the same physical substrate carries different information from moment to moment? This question is part of the larger question of whether the brain is better modeled by connectionism or by symbolic artificial intelligence (AI), but we review it in the specific context of the psychophysics of stimulus comparison and the format and protocol of information transmission over the long-range tracts of the brain.

Adaptation of model-free RL to variations in the task under continuous state and action spaces applied to robot grasping

Shahid, A.A., Piga, D., Braghin, F. et al. Continuous control actions learning and adaptation for robotic manipulation through reinforcement learning, Auton Robot 46, 483\u2013498 (2022) DOI: 10.1007/s10514-022-10034-z.

This paper presents a learning-based method that uses simulation data to learn an object manipulation task using two model-free reinforcement learning (RL) algorithms. The learning performance is compared across on-policy and off-policy algorithms: Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC). In order to accelerate the learning process, the fine-tuning procedure is proposed that demonstrates the continuous adaptation of on-policy RL to new environments, allowing the learned policy to adapt and execute the (partially) modified task. A dense reward function is designed for the task to enable an efficient learning of the agent. A grasping task involving a Franka Emika Panda manipulator is considered as the reference task to be learned. The learned control policy is demonstrated to be generalizable across multiple object geometries and initial robot/parts configurations. The approach is finally tested on a real Franka Emika Panda robot, showing the possibility to transfer the learned behavior from simulation. Experimental results show 100% of successful grasping tasks, making the proposed approach applicable to real applications.

New algorithms for outlier detection with applications in robotics

P. Antonante, V. Tzoumas, H. Yang and L. Carlone, Outlier-Robust Estimation: Hardness, Minimally Tuned Algorithms, and Applications, IEEE Transactions on Robotics, vol. 38, no. 1, pp. 281-301, Feb. 2022 DOI: 10.1109/TRO.2021.3094984.

Nonlinear estimation in robotics and vision is typically plagued with outliers due to wrong data association or incorrect detections from signal processing and machine learning methods. This article introduces two unifying formulations for outlier-robust estimation, generalized maximum consensus ( $\text{G}$ – $\text{MC}$ ) and generalized truncated least squares ( $\text{G-TLS}$ ), and investigates fundamental limits, practical algorithms, and applications. Our first contribution is a proof that outlier-robust estimation is inapproximable: In the worst case, it is impossible to (even approximately) find the set of outliers, even with slower-than-polynomial-time algorithms (particularly, algorithms running in quasi-polynomial time). As a second contribution, we review and extend two general-purpose algorithms. The first, adaptive trimming ( $\text{ADAPT}$ ), is combinatorial and is suitable for $\text{G}$ – $\text{MC}$ ; the second, graduated nonconvexity ( $\text{GNC}$ ), is based on homotopy methods and is suitable for $\text{G-TLS}$ . We extend $\text{ADAPT}$ and $\text{GNC}$ to the case where the user does not have prior knowledge of the inlier-noise statistics (or the statistics may vary over time) and is unable to guess a reasonable threshold to separate inliers from outliers (as the one commonly used in RANdom SAmple Consensus $(\text{RANSAC})$ . We propose the first minimally tuned algorithms for outlier rejection, which dynamically decide how to separate inliers from outliers. Our third contribution is an evaluation of the proposed algorithms on robot perception problems: mesh registration, image-based object detection ( shape alignment ), and pose graph optimization. $\text{ADAPT}$ and $\text{GNC}$ execute in real time, are deterministic, outperform $\text{RANSAC}$ , and are robust up to 80\u201390% outliers. Their minimally tuned versions also compare favorably with the state of the art, even though they do not rely on a noise bound for the inliers.

Leveraging embodiment: finding an optimal viewpoint in the robot environment for improving scene description

Tan, Sinan, Guo, Di, Liu, Huaping, Zhang, Xinyu, Sun, Fuchun Embodied scene description, Autonomous Robots 46(1) DOI: 10.1007/s10514-021-10014-9.

Embodiment is an important characteristic for all intelligent agents, while existing scene description tasks mainly focus on analyzing images passively and the semantic understanding of the scenario is separated from the interaction between the agent and the environment. In this work, we propose the Embodied Scene Description, which exploits the embodiment ability of the agent to find an optimal viewpoint in its environment for scene description tasks. A learning framework with the paradigms of imitation learning and reinforcement learning is established to teach the intelligent agent to generate corresponding sensorimotor activities. The proposed framework is tested on both the AI2Thor dataset and a real-world robotic platform for different scene description tasks, demonstrating the effectiveness and scalability of the developed method. Also, a mobile application is developed, which can be used to assist visually-impaired people to better understand their surroundings.

Using physical human-robot interaction to deduce the goals of the human during learning

Losey DP, Bajcsy A, O’Malley MK, Dragan AD, Physical interaction as communication: Learning robot objectives online from human corrections, The International Journal of Robotics Research. 2022;41(1):20-44 DOI: 10.1177/02783649211050958.

When a robot performs a task next to a human, physical interaction is inevitable: the human might push, pull, twist, or guide the robot. The state of the art treats these interactions as disturbances that the robot should reject or avoid. At best, these robots respond safely while the human interacts; but after the human lets go, these robots simply return to their original behavior. We recognize that physical human\u2013robot interaction (pHRI) is often intentional: the human intervenes on purpose because the robot is not doing the task correctly. In this article, we argue that when pHRI is intentional it is also informative: the robot can leverage interactions to learn how it should complete the rest of its current task even after the person lets go. We formalize pHRI as a dynamical system, where the human has in mind an objective function they want the robot to optimize, but the robot does not get direct access to the parameters of this objective: they are internal to the human. Within our proposed framework human interactions become observations about the true objective. We introduce approximations to learn from and respond to pHRI in real-time. We recognize that not all human corrections are perfect: often users interact with the robot noisily, and so we improve the efficiency of robot learning from pHRI by reducing unintended learning. Finally, we conduct simulations and user studies on a robotic manipulator to compare our proposed approach with the state of the art. Our results indicate that learning from pHRI leads to better task performance and improved human satisfaction.

An hypothesis that human perception can only be done in real-time if prediction mechanisms go ahead and save the gap caused by the processing of inputs, which actually cannot be done in real-time (plus further post-processing and adjustment of past perceptions)

Hinze Hogendoorn, Perception in real-time: predicting the present, reconstructing the past, Trends in Cognitive Sciences, Volume 26, Issue 2, 2022 DOI: 10.1016/j.tics.2021.11.003.

We feel that we perceive events in the environment as they unfold in real-time. However, this intuitive view of perception is impossible to implement in the nervous system due to biological constraints such as neural transmission delays. I propose a new way of thinking about real-time perception: at any given moment, instead of representing a single timepoint, perceptual mechanisms represent an entire timeline. On this timeline, predictive mechanisms predict ahead to compensate for delays in incoming sensory input, and reconstruction mechanisms retroactively revise perception when those predictions do not come true. This proposal integrates and extends previous work to address a crucial gap in our understanding of a fundamental aspect of our everyday life: the experience of perceiving the present.

A really nice comparison of different outlier detection methods

Hamzeh Alimohammadi, Shengnan Nancy Chen, Performance evaluation of outlier detection techniques in production timeseries: A systematic review and meta-analysis, Expert Systems with Applications, Volume 191, 2022 DOI: 10.1016/j.eswa.2021.116371.

Time-series data have been extensively collected and analyzed in many disciplines, such as stock market, medical diagnosis, meteorology, and oil and gas industry. Numerous data in these disciplines are sequence of observations measured as functions of time, which can be further used for different applications via analytical or data analytics techniques (e.g., to forecast future price, climate change, etc.). However, presence of outliers can cause significant uncertainties to interpretation results; hence, it is essential to remove the outliers accurately and efficiently before conducting any further analysis. A total of 17 techniques that belong to statistical, regression-based, and machine learning (ML) based categories for outlier detection in timeseries are applied to the oil and gas production data analysis. 15 of these methods are utilized for production data analysis for the first time. Two state-of-the-art and high-performance techniques are then selected for data cleaning which require minimum control and time complexity. Moreover, performances of these techniques are evaluated based on several metrics including the accuracy, precision, recall, F1 score, and Cohen\u2019s Kappa to rank the techniques. Results show that eight unsupervised algorithms outperform the rest of the methods based on the synthetic case study with known outliers. For example, accuracies of the eight shortlisted methods are in the range of 0.83\u20130.99 with a precision between 0.83 and 0.98, compared to 0.65\u20130.82 and 0.07\u20130.77 for the others. In addition, ML-based techniques perform better than statistical techniques. Our experimental results on real field data further indicate that the k-nearest neighbor (KNN) and Fulford-Blasingame methods are superior to other outlier detection frameworks for outlier detection in production data, followed by four others including density-based spatial clustering of applications with noise (DBSCAN), and angle-based outlier detection (ABOD). Even though the techniques are examined with oil and gas production data, but the same data cleaning workflow can be used to detect timeseries\u2019 outliers in other disciplines.

Defining and measuring mathematically the level of knowledge, ignorance and uncertainty

Fujun Hou, Evangelos Triantaphyllou, Juri Yanase, Knowledge, ignorance, and uncertainty: An investigation from the perspective of some differential equations, Expert Systems with Applications, Volume 191, 2022 DOI: 10.1016/j.eswa.2021.116325.

People use knowledge on several cognitive tasks such as when they recognize objects, rank entities such as the alternatives in multi-criteria decision making, or for classification tasks of decision making / expert / intelligent systems. When people have sufficient relevant knowledge, they can make well-distinctive assessments among entities. Otherwise, they may exhibit some uncertainty. This paper establishes two differential equations, of which one is for the interaction between the knowledge level and the uncertainty level, and the other is for the interaction between the ignorance level and the uncertainty level. By solving these two differential equations under certain boundary conditions, one can derive that the proposed knowledge level indicator is equivalent to Wierman’s knowledge granularity measure up to a constant (exactly, ln2). Moreover, the knowledge level indicator and the ignorance level indicator are found to be in a complementary relationship with each other. That is, more knowledge implies less ignorance, and vice-versa. The results of this study bridge a critical gap that exists in the understanding of the concepts of knowledge and ignorance.

Steffensen Value Iteration as an alternative to Value Iteration for faster convergence

Y. Cheng, L. Chen, C. L. P. Chen and X. Wang, Off-Policy Deep Reinforcement Learning Based on Steffensen Value Iteration, IEEE Transactions on Cognitive and Developmental Systems, vol. 13, no. 4, pp. 1023-1032, Dec. 2021 DOI: 10.1109/TCDS.2020.3034452.

As an important machine learning method, deep reinforcement learning (DRL) has been rapidly developed in recent years and has achieved breakthrough results in many fields, such as video games, natural language processing, and robot control. However, due to the inherit trial-and-error learning mechanism of reinforcement learning and the time-consuming training of deep neural network itself, the convergence speed of DRL is very slow and consequently limits the real applications of DRL. In this article, aiming to improve the convergence speed of DRL, we proposed a novel Steffensen value iteration (SVI) method by applying the Steffensen iteration to the value function iteration of off-policy DRL from the perspective of fixed-point iteration. The proposed SVI is theoretically proved to be convergent and have a faster convergence speed than Bellman value iteration. The proposed SVI has versatility, which can be easily combined with existing off-policy RL algorithms. In this article, we proposed two speedy off-policy DRLs by combining SVI with DDQN and TD3, respectively, namely, SVI-DDQN and SVI-TD3. Experiments on several discrete-action and continuous-action tasks from the Atari 2600 and MuJoCo platforms demonstrated that our proposed SVI-based DRLs can achieve higher average reward in a shorter time than the comparative algorithm.

A grammar for symbolic robot maps that allows for mapping unknown spaces

B. Talbot, F. Dayoub, P. Corke and G. Wyeth, Robot Navigation in Unseen Spaces Using an Abstract Map, IEEE Transactions on Cognitive and Developmental Systems, vol. 13, no. 4, pp. 791-805, Dec. 2021 DOI: 10.1109/TCDS.2020.2993855.

Human navigation in built environments depends on symbolic spatial information which has unrealized potential to enhance robot navigation capabilities. Information sources, such as labels, signs, maps, planners, spoken directions, and navigational gestures communicate a wealth of spatial information to the navigators of built environments; a wealth of information that robots typically ignore. We present a robot navigation system that uses the same symbolic spatial information employed by humans to purposefully navigate in unseen built environments with a level of performance comparable to humans. The navigation system uses a novel data structure called the abstract map to imagine malleable spatial models for unseen spaces from spatial symbols. Sensorimotor perceptions from a robot are then employed to provide purposeful navigation to symbolic goal locations in the unseen environment. We show how a dynamic system can be used to create malleable spatial models for the abstract map, and provide an open-source implementation to encourage future work in the area of symbolic navigation. The symbolic navigation performance of humans and a robot is evaluated in a real-world built environment. This article concludes with a qualitative analysis of human navigation strategies, providing further insights into how the symbolic navigation capabilities of robots in unseen built environments can be improved in the future.