Tag Archives: Evolutionary Processes

Reducing the need of samples in RL through evolutionary techniques

Onori, G., Shahid, A.A., Braghin, F. et al. , Adaptive Optimization of Hyper-Parameters for Robotic Manipulation through Evolutionary Reinforcement Learning, J Intell Robot Syst 110, 108 (2024) DOI: 10.1007/s10846-024-02138-8.

Deep Reinforcement Learning applications are growing due to their capability of teaching the agent any task autonomously and generalizing the learning. However, this comes at the cost of a large number of samples and interactions with the environment. Moreover, the robustness of learned policies is usually achieved by a tedious tuning of hyper-parameters and reward functions. In order to address this issue, this paper proposes an evolutionary RL algorithm for the adaptive optimization of hyper-parameters. The policy is trained using an on-policy algorithm, Proximal Policy Optimization (PPO), coupled with an evolutionary algorithm. The achieved results demonstrate an improvement in the sample efficiency of the RL training on a robotic grasping task. In particular, the learning is improved with respect to the baseline case of a non-evolutionary agent. The evolutionary agent needs % fewer samples to completely learn the grasping task, enabled by the adaptive transfer of knowledge between the agents through the evolutionary algorithm. The proposed approach also demonstrates the possibility of updating reward parameters during training, potentially providing a general approach to creating reward functions.

Reinterpretation of evolutionary processes as algorithms for Bayesian inference

Jordan W. Suchow, David D. Bourgin, Thomas L. Griffiths, Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference, Trends in Cognitive Sciences, Volume 21, Issue 7, July 2017, Pages 522-530, ISSN 1364-6613, DOI: 10.1016/j.tics.2017.04.005.

Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity.