Tag Archives: Human-robot Integration

Using physical human-robot interaction to deduce the goals of the human during learning

Losey DP, Bajcsy A, O’Malley MK, Dragan AD, Physical interaction as communication: Learning robot objectives online from human corrections, The International Journal of Robotics Research. 2022;41(1):20-44 DOI: 10.1177/02783649211050958.

When a robot performs a task next to a human, physical interaction is inevitable: the human might push, pull, twist, or guide the robot. The state of the art treats these interactions as disturbances that the robot should reject or avoid. At best, these robots respond safely while the human interacts; but after the human lets go, these robots simply return to their original behavior. We recognize that physical human\u2013robot interaction (pHRI) is often intentional: the human intervenes on purpose because the robot is not doing the task correctly. In this article, we argue that when pHRI is intentional it is also informative: the robot can leverage interactions to learn how it should complete the rest of its current task even after the person lets go. We formalize pHRI as a dynamical system, where the human has in mind an objective function they want the robot to optimize, but the robot does not get direct access to the parameters of this objective: they are internal to the human. Within our proposed framework human interactions become observations about the true objective. We introduce approximations to learn from and respond to pHRI in real-time. We recognize that not all human corrections are perfect: often users interact with the robot noisily, and so we improve the efficiency of robot learning from pHRI by reducing unintended learning. Finally, we conduct simulations and user studies on a robotic manipulator to compare our proposed approach with the state of the art. Our results indicate that learning from pHRI leads to better task performance and improved human satisfaction.

POMDPs to combine human semantic sensing with robot sensing

Luke Burks, Nisar Ahmed, Ian Loefgren, Luke Barbier, Jeremy Muesing, Jamison McGinley, Sousheel Vunnam, Collaborative human-autonomy semantic sensing through structured POMDP planning, . Robotics and Autonomous Systems, Volume 140, 2021 DOI: 10.1016/j.robot.2021.103753.

Autonomous unmanned systems and robots must be able to actively leverage all available information sources — including imprecise but readily available semantic observations provided by human collaborators. This work develops and validates a novel active collaborative human–machine sensing solution for robotic information gathering and optimal decision making problems, with an example implementation of a dynamic target search scenario. Our approach uses continuous partially observable Markov decision process (CPOMDP) planning to generate vehicle trajectories that optimally exploit imperfect detection data from onboard sensors, as well as semantic natural language observations that can be specifically requested from human sensors. The key innovations are a method for the inclusion of a human querying/sensing model in a CPOMDP based autonomous decision making process, as well as a scalable hierarchical Gaussian mixture model formulation for efficiently solving CPOMDPs with semantic observations in continuous dynamic state spaces. Unlike previous state-of-the-art approaches this allows planning in large, complex, highly segmented environments. Our solution is demonstrated and validated with a real human–robot team engaged in dynamic indoor target search and capture scenarios on a custom testbed..

Integrating humans and robots in the factories

Andrea Cherubini, Robin Passama, André Crosnier, Antoine Lasnier, Philippe Fraisse, Collaborative manufacturing with physical human–robot interaction, Robotics and Computer-Integrated Manufacturing, Volume 40, August 2016, Pages 1-13, ISSN 0736-5845, DOI: 10.1016/j.rcim.2015.12.007.

Although the concept of industrial cobots dates back to 1999, most present day hybrid human–machine assembly systems are merely weight compensators. Here, we present results on the development of a collaborative human–robot manufacturing cell for homokinetic joint assembly. The robot alternates active and passive behaviours during assembly, to lighten the burden on the operator in the first case, and to comply to his/her needs in the latter. Our approach can successfully manage direct physical contact between robot and human, and between robot and environment. Furthermore, it can be applied to standard position (and not torque) controlled robots, common in the industry. The approach is validated in a series of assembly experiments. The human workload is reduced, diminishing the risk of strain injuries. Besides, a complete risk analysis indicates that the proposed setup is compatible with the safety standards, and could be certified.