Jiawei Lin, Xuekai Wei, Weizhi Xian, Jielu Yan, Leong Hou U, Yong Feng, Zhaowei Shang, Mingliang Zhou, Continuous reinforcement learning via advantage value difference reward shaping: A proximal policy optimization perspective, Engineering Applications of Artificial Intelligence, Volume 151, 2025 10.1016/j.engappai.2025.110676.
Deep reinforcement learning has shown great promise in industrial applications. However, these algorithms suffer from low learning efficiency because of sparse reward signals in continuous control tasks. Reward shaping addresses this issue by transforming sparse rewards into more informative signals, but some designs that rely on domain experts or heuristic rules can introduce cognitive biases, leading to suboptimal solutions. To overcome this challenge, this paper proposes the advantage value difference (AVD), a generalized potential-based end-to-end exploration reward function. The main contribution of this paper is to improve the agent’s exploration efficiency, accelerate the learning process, and prevent premature convergence to local optima. The method leverages the temporal difference error to estimate the potential of states and uses the advantage function to guide the learning process toward more effective strategies. In the context of engineering applications, this paper proves the superiority of AVD in continuous control tasks within the multi-joint dynamics with contact (MuJoCo) environment. Specifically, the proposed method achieves an average increase of 23.5% in episode rewards for the Hopper, Swimmer, and Humanoid tasks compared with the state-of-the-art approaches. The results demonstrate the significant improvement in learning efficiency achieved by AVD for industrial robotic systems.