Tag Archives: Icp

Comparison of map-matching methods

Héber Sobreira, Carlos M. Costa, Ivo Sousa, Luis Rocha, José Lima, P. C. M. A. Farias, Paulo Costa, A. Paulo Moreira, Map-Matching Algorithms for Robot Self-Localization: A Comparison Between Perfect Match, Iterative Closest Point and Normal Distributions Transform, Journal of Intelligent & Robotic Systems, March 2019, Volume 93, Issue 3–4, pp 533–546 DOI: 10.1007/s10846-017-0765-5.

The self-localization of mobile robots in the environment is one of the most fundamental problems in the robotics navigation field. It is a complex and challenging problem due to the high requirements of autonomous mobile vehicles, particularly with regard to the algorithms accuracy, robustness and computational efficiency. In this paper, we present a comparison of three of the most used map-matching algorithms applied in localization based on natural landmarks: our implementation of the Perfect Match (PM) and the Point Cloud Library (PCL) implementation of the Iterative Closest Point (ICP) and the Normal Distribution Transform (NDT). For the purpose of this comparison we have considered a set of representative metrics, such as pose estimation accuracy, computational efficiency, convergence speed, maximum admissible initialization error and robustness to the presence of outliers in the robots sensors data. The test results were retrieved using our ROS natural landmark public dataset, containing several tests with simulated and real sensor data. The performance and robustness of the Perfect Match is highlighted throughout this article and is of paramount importance for real-time embedded systems with limited computing power that require accurate pose estimation and fast reaction times for high speed navigation. Moreover, we added to PCL a new algorithm for performing correspondence estimation using lookup tables that was inspired by the PM approach to solve this problem. This new method for computing the closest map point to a given sensor reading proved to be 40 to 60 times faster than the existing k-d tree approach in PCL and allowed the Iterative Closest Point algorithm to perform point cloud registration 5 to 9 times faster.

Globally optimal ICP

J. Yang, H. Li, D. Campbell and Y. Jia, “Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 11, pp. 2241-2254, Nov. 1 2016. DOI: 10.1109/TPAMI.2015.2513405.

The Iterative Closest Point (ICP) algorithm is one of the most widely used methods for point-set registration. However, being based on local iterative optimization, ICP is known to be susceptible to local minima. Its performance critically relies on the quality of the initialization and only local optimality is guaranteed. This paper presents the first globally optimal algorithm, named Go-ICP, for Euclidean (rigid) registration of two 3D point-sets under the $L_2$ error metric defined in ICP. The Go-ICP method is based on a branch-and-bound scheme that searches the entire 3D motion space $SE(3)$ . By exploiting the special structure of $SE(3)$ geometry, we derive novel upper and lower bounds for the registration error function. Local ICP is integrated into the BnB scheme, which speeds up the new method while guaranteeing global optimality. We also discuss extensions, addressing the issue of outlier robustness. The evaluation demonstrates that the proposed method is able to produce reliable registration results regardless of the initialization. Go-ICP can be applied in scenarios where an optimal solution is desirable or where a good initialization is not always available.

Integration of the ICP algorithm with a Kalman filter to improve relative localization, with a good state-of-the-art of ICP algorithms

F. Aghili and C. Y. Su, “Robust Relative Navigation by Integration of ICP and Adaptive Kalman Filter Using Laser Scanner and IMU,” in IEEE/ASME Transactions on Mechatronics, vol. 21, no. 4, pp. 2015-2026, Aug. 2016.DOI: 10.1109/TMECH.2016.2547905.

This paper presents a robust six-degree-of-freedom relative navigation by combining the iterative closet point (ICP) registration algorithm and a noise-adaptive Kalman filter in a closed-loop configuration together with measurements from a laser scanner and an inertial measurement unit (IMU). In this approach, the fine-alignment phase of the registration is integrated with the filter innovation step for estimation correction, while the filter estimate propagation provides the coarse alignment needed to find the corresponding points at the beginning of ICP iteration cycle. The convergence of the ICP point matching is monitored by a fault-detection logic, and the covariance associated with the ICP alignment error is estimated by a recursive algorithm. This ICP enhancement has proven to improve robustness and accuracy of the pose-tracking performance and to automatically recover correct alignment whenever the tracking is lost. The Kalman filter estimator is designed so as to identify the required parameters such as IMU biases and location of the spacecraft center of mass. The robustness and accuracy of the relative navigation algorithm is demonstrated through a hardware-in-the loop simulation setting, in which actual vision data for the relative navigation are generated by a laser range finder scanning a spacecraft mockup attached to a robotic motion simulator.

Improvements on the ICP algorithm to point cloud registration from a low precision RGB-D sensor

Rogério Yugo Takimoto, Marcos de Sales Guerra Tsuzuki, Renato Vogelaar, Thiago de Castro Martins, André Kubagawa Sato, Yuma Iwao, Toshiyuki Gotoh, Seiichiro Kagei, 3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor, Mechatronics, Volume 35, May 2016, Pages 11-22, ISSN 0957-4158, DOI:j.mechatronics.2015.10.014.

A 3D reconstruction method using feature points is presented and the parameters used to improve the reconstruction are discussed. The precision of the 3D reconstruction is improved by combining point clouds obtained from different viewpoints using structured light. A well-known algorithm for point cloud registration is the ICP (Iterative Closest Point) that determines the rotation and translation that, when applied to one of the point clouds, places both point clouds optimally. The ICP algorithm iteratively executes two main steps: point correspondence determination and registration algorithm. The point correspondence determination is a module that, if not properly executed, can make the ICP converge to a local minimum. To overcome this drawback, two techniques were used. A meaningful set of 3D points using a technique known as SIFT (Scale-invariant feature transform) was obtained and an ICP that uses statistics to generate a dynamic distance and color threshold to the distance allowed between closest points was implemented. The reconstruction precision improvement was implemented using meaningful point clouds and the ICP to increase the number of points in the 3D space. The surface reconstruction is performed using marching cubes and filters to remove the noise and to smooth the surface. The factors that influence the 3D reconstruction precision are here discussed and analyzed. A detailed discussion of the number of frames used by the ICP and the ICP parameters is presented.