Tag Archives: Deep Reinforcement Learning

Summary of the state of the art and current challenges of Deep RL in Robotics

Ibarz J, Tan J, Finn C, Kalakrishnan M, Pastor P, Levine S., How to train your robot with deep reinforcement learning: lessons we have learned, . The International Journal of Robotics Research. 2021;40(4-5):698-721 DOI: 10.1177/0278364920987859.

Deep reinforcement learning (RL) has emerged as a promising approach for autonomously acquiring complex behaviors from low-level sensor observations. Although a large portion of deep RL research has focused on applications in video games and simulated control, which does not connect with the constraints of learning in real environments, deep RL has also demonstrated promise in enabling physical robots to learn complex skills in the real world. At the same time, real-world robotics provides an appealing domain for evaluating such algorithms, as it connects directly to how humans learn: as an embodied agent in the real world. Learning to perceive and move in the real world presents numerous challenges, some of which are easier to address than others, and some of which are often not considered in RL research that focuses only on simulated domains. In this review article, we present a number of case studies involving robotic deep RL. Building off of these case studies, we discuss commonly perceived challenges in deep RL and how they have been addressed in these works. We also provide an overview of other outstanding challenges, many of which are unique to the real-world robotics setting and are not often the focus of mainstream RL research. Our goal is to provide a resource both for roboticists and machine learning researchers who are interested in furthering the progress of deep RL in the real world.

NOTES:

  • Interesting summary of the state of the arts and algorithms used.
  • Defining reward beforehand partly defeats the primary goal of learning by itself.
  • Re-using experiences gathered for learning a task for other tasks, since experiences are mostly task-independent.
  • The problem of leaving the robot unattended while learning, and of mechanism damages and wear-tear. “Learning physically requires human presence for resetting experiments, monitoring hardware status and ensuring safety”. “The majority of robot learning experiments to date were conducted on a single robot closely monitored by a single human operator. This one-to-one relation between robot and operator has been a tedious but effective way to ensure continuous and safe operation. The human can reset the scene, stop the robot in unsafe situations, and simply restart and reset the robot on failures. However, to scale up data collection efforts and increase the throughput of evaluation runs, robots need to run without human supervision. It is impractical to allocate more operators to a set-up with multiple robots, or whenever a single robot is meant to run 24/7, and especially both.” “Repeated falling, self-collisions, jerky actuation, and collisions with obstacles may damage the robot and its surroundings, which will require costly repairs and manual interventions ” “We use the term robot persistence to refer to the capability of the robot to persist in collecting data and training with minimal human intervention.”
  • The Reality Gap can be very important, and so the life-long adaptation. “The reality gap is a major obstacle that prevents the application of learning to robotics”. “we found that the actuator dynamics and the lack of latency modeling are the main causes of the model error” in the reality gap. “Hardware degradation, such as change of battery level, wear and tear, and hardware failure, are the major causes of dynamic changes”
  • Recognizing dangerous situations: section 4.11.3, even learn them.
  • Importance of learning bad situations together with good situations: “to add demonstration data to the data buffer for the off-policy algorithm” -> “tends to be problematic in practice, because commonly used approximate dynamic programming methods (i.e., value function estimation) need to see both good and bad experience to learn which actions are desirable. Therefore, when the demonstrations are much better than the agent’s own experience, the value function will typically learn that the demonstrated states are better, but might fail to learn which actions must be taken to reach those states.” -> can be intertwined together, mixing their results into one (“joint training”) -> better to learn the models in model-based.
  • Simulation is needed to reduce the effort of real learning.”In the last few years, the OpenAI Gym benchmark (Brockman et al., 2016) is the key driving force behind the development of deep RL and its application to robotics”
  • “Generally speaking, among model-free techniques, off-policy methods are about an order of magnitude more data efficient than on-policy methods. Model-based methods could be another order of magnitude more data efficient than their model-free counterparts.”
  • The presence of delays in the learning loop compromises Markovianity and thus RL performance (sect. 4.8). These delays are not covered by simulators. Compensating delay techniques are addressed in sect. 4.3.1. “Latency measures the delay from when the observation is measured at the sensor, to when the action is actually executed at the actuator. This delay is usually on the order of milliseconds to seconds, depending on the hardware and the complexity of the policy. The existence of latency means that the next state of the system does not directly depend on the measured state, but instead on the state after a delay of latency after the measurement, which is not observable. Latency violates the most fundamental assumption of MDP (Xiao et al., 2020), and thus can cause failure to some RL algorithms.” ” For model-based methods, the planning component is often computationally expensive, and incurs additional latency.”
  • “pretrain a policy network with demonstrations via learning (also called behavioral cloning)”
  • Overfitting may be a cause of worsening learning quality with more experiences.
  • “effective exploration is particularly challenging in tasks with sparse reward. In the most extreme version of this problem, the agent must essentially find a (high-reward) needle in a (zero-reward) haystack. Unfortunately, the most natural formulation of many practical robotics tasks has this property. For this reason, a number of prior works have focused on studying exploration for sparse-reward robotic tasks”
  • A main drawback of Deep RL is the need of massive data.
  • High sensitivity of algorithms, particularly Deep ones, to the initial state and to the way their hyperparameters are set, specially for Off-policy algorithms.
  • “There is a tradeoff here as more environment diversity may cause the policies to have lower performance. Often this can be alleviated with larger and better neural network architectures”

Deep learning RL methods for robot navigation

Luong, M., Pham, C., Incremental Learning for Autonomous Navigation of Mobile Robots based on Deep Reinforcement Learning, . J Intell Robot Syst 101, 1 (2021) DOI: 10.1007/s10846-020-01262-5.

This paper presents an incremental learning method and system for autonomous robot navigation. The range finder laser sensor and online deep reinforcement learning are utilized for generating the navigation policy, which is effective for avoiding obstacles along the robot’s trajectories as well as for robot’s reaching the destination. An empirical experiment is conducted under simulation and real-world settings. Under the simulation environment, the results show that the proposed method can generate a highly effective navigation policy (more than 90% accuracy) after only 150k training iterations. Moreover, our system has slightly outperformed deep-Q, while having considerably surpassed Proximal Policy Optimization, two recent state-of-the art robot navigation systems. Finally, two experiments are performed to demonstrate the feasibility and effectiveness of our robot’s proposed navigation system in real-time under real-world settings.

Application of Deep RL to person following by a robot, reducing the training effort of the network by reusing simple state situations in many artificially generated states

Pang, L., Zhang, Y., Coleman, S. et al., Efficient Hybrid-Supervised Deep Reinforcement Learning for Person Following Robot, J Intell Robot Syst 97, 299–312 (2020), DOI: 10.1007/s10846-019-01030-0.

Traditional person following robots usually need hand-crafted features and a well-designed controller to follow the assigned person. Normally it is difficult to be applied in outdoor situations due to variability and complexity of the environment. In this paper, we propose an approach in which an agent is trained by hybrid-supervised deep reinforcement learning (DRL) to perform a person following task in end-to-end manner. The approach enables the robot to learn features autonomously from monocular images and to enhance performance via robot-environment interaction. Experiments show that the proposed approach is adaptive to complex situations with significant illumination variation, object occlusion, target disappearance, pose change, and pedestrian interference. In order to speed up the training process to ensure easy application of DRL to real-world robotic follower controls, we apply an integration method through which the agent receives prior knowledge from a supervised learning (SL) policy network and reinforces its performance with a value-based or policy-based (including actor-critic method) DRL model. We also utilize an efficient data collection approach for supervised learning in the context of person following. Experimental results not only verify the robustness of the proposed DRL-based person following robot system, but also indicate how easily the robot can learn from mistakes and improve performance.

A nice (short) survey of deep RL

Matthew Botvinick, Sam Ritter, Jane X. Wang, Zeb Kurth-Nelson, Charles Blundell, Demis Hassabis, Reinforcement Learning, Fast and Slow, Trends in Cognitive Sciences, Volume 23, Issue 5, 2019, Pages 408-422 DOI: 10.1016/j.tics.2019.02.006.

Deep reinforcement learning (RL) methods have driven impressive advances in artificial intelligence in recent years, exceeding human performance in domains ranging from Atari to Go to no-limit poker. This progress has drawn the attention of cognitive scientists interested in understanding human learning. However, the concern has been raised that deep RL may be too sample-inefficient – that is, it may simply be too slow – to provide a plausible model of how humans learn. In the present review, we counter this critique by describing recently developed techniques that allow deep RL to operate more nimbly, solving problems much more quickly than previous methods. Although these techniques were developed in an AI context, we propose that they may have rich implications for psychology and neuroscience. A key insight, arising from these AI methods, concerns the fundamental connection between fast RL and slower, more incremental forms of learning.

Interesting use of RL (deep-RL) for detection – reformulation of detection as a sequential decision process

F. Ghesu et al., Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 1, pp. 176-189, DOI: 10.1109/TPAMI.2017.2782687.

Robust and fast detection of anatomical structures is a prerequisite for both diagnostic and interventional medical image analysis. Current solutions for anatomy detection are typically based on machine learning techniques that exploit large annotated image databases in order to learn the appearance of the captured anatomy. These solutions are subject to several limitations, including the use of suboptimal feature engineering techniques and most importantly the use of computationally suboptimal search-schemes for anatomy detection. To address these issues, we propose a method that follows a new paradigm by reformulating the detection problem as a behavior learning task for an artificial agent. We couple the modeling of the anatomy appearance and the object search in a unified behavioral framework, using the capabilities of deep reinforcement learning and multi-scale image analysis. In other words, an artificial agent is trained not only to distinguish the target anatomical object from the rest of the body but also how to find the object by learning and following an optimal navigation path to the target object in the imaged volumetric space. We evaluated our approach on 1487 3D-CT volumes from 532 patients, totaling over 500,000 image slices and show that it significantly outperforms state-of-the-art solutions on detecting several anatomical structures with no failed cases from a clinical acceptance perspective, while also achieving a 20-30 percent higher detection accuracy. Most importantly, we improve the detection-speed of the reference methods by 2-3 orders of magnitude, achieving unmatched real-time performance on large 3D-CT scans.

Deep reinforcement learning applied to learn both attention and classification in a task of vehicle classification

D. Zhao, Y. Chen and L. Lv, Deep Reinforcement Learning With Visual Attention for Vehicle Classification, IEEE Transactions on Cognitive and Developmental Systems, vol. 9, no. 4, pp. 356-367, DOI: 10.1109/TCDS.2016.2614675.

Automatic vehicle classification is crucial to intelligent transportation system, especially for vehicle-tracking by police. Due to the complex lighting and image capture conditions, image-based vehicle classification in real-world environments is still a challenging task and the performance is far from being satisfactory. However, owing to the mechanism of visual attention, the human vision system shows remarkable capability compared with the computer vision system, especially in distinguishing nuances processing. Inspired by this mechanism, we propose a convolutional neural network (CNN) model of visual attention for image classification. A visual attention-based image processing module is used to highlight one part of an image and weaken the others, generating a focused image. Then the focused image is input into the CNN to be classified. According to the classification probability distribution, we compute the information entropy to guide a reinforcement learning agent to achieve a better policy for image classification to select the key parts of an image. Systematic experiments on a surveillance-nature dataset which contains images captured by surveillance cameras in the front view, demonstrate that the proposed model is more competitive than the large-scale CNN in vehicle classification tasks.