Pang, L., Zhang, Y., Coleman, S. et al., Efficient Hybrid-Supervised Deep Reinforcement Learning for Person Following Robot, J Intell Robot Syst 97, 299–312 (2020), DOI: 10.1007/s10846-019-01030-0.
Traditional person following robots usually need hand-crafted features and a well-designed controller to follow the assigned person. Normally it is difficult to be applied in outdoor situations due to variability and complexity of the environment. In this paper, we propose an approach in which an agent is trained by hybrid-supervised deep reinforcement learning (DRL) to perform a person following task in end-to-end manner. The approach enables the robot to learn features autonomously from monocular images and to enhance performance via robot-environment interaction. Experiments show that the proposed approach is adaptive to complex situations with significant illumination variation, object occlusion, target disappearance, pose change, and pedestrian interference. In order to speed up the training process to ensure easy application of DRL to real-world robotic follower controls, we apply an integration method through which the agent receives prior knowledge from a supervised learning (SL) policy network and reinforces its performance with a value-based or policy-based (including actor-critic method) DRL model. We also utilize an efficient data collection approach for supervised learning in the context of person following. Experimental results not only verify the robustness of the proposed DRL-based person following robot system, but also indicate how easily the robot can learn from mistakes and improve performance.