Luong, M., Pham, C., Incremental Learning for Autonomous Navigation of Mobile Robots based on Deep Reinforcement Learning, . J Intell Robot Syst 101, 1 (2021) DOI: 10.1007/s10846-020-01262-5.
This paper presents an incremental learning method and system for autonomous robot navigation. The range finder laser sensor and online deep reinforcement learning are utilized for generating the navigation policy, which is effective for avoiding obstacles along the robot’s trajectories as well as for robot’s reaching the destination. An empirical experiment is conducted under simulation and real-world settings. Under the simulation environment, the results show that the proposed method can generate a highly effective navigation policy (more than 90% accuracy) after only 150k training iterations. Moreover, our system has slightly outperformed deep-Q, while having considerably surpassed Proximal Policy Optimization, two recent state-of-the art robot navigation systems. Finally, two experiments are performed to demonstrate the feasibility and effectiveness of our robot’s proposed navigation system in real-time under real-world settings.