Category Archives: Cognitive Sciences

On how the human cognition detects regularities in noisy sensory data (“Statistical learning” in psychology terms)

Annabelle Goujon, André Didierjean, Simon Thorpe, Investigating implicit statistical learning mechanisms through contextual cueing, Trends in Cognitive Sciences, Volume 19, Issue 9, September 2015, Pages 524-533, ISSN 1364-6613, DOI: 10.1016/j.tics.2015.07.009.

Since its inception, the contextual cueing (CC) paradigm has generated considerable interest in various fields of cognitive sciences because it constitutes an elegant approach to understanding how statistical learning (SL) mechanisms can detect contextual regularities during a visual search. In this article we review and discuss five aspects of CC: (i) the implicit nature of learning, (ii) the mechanisms involved in CC, (iii) the mediating factors affecting CC, (iv) the generalization of CC phenomena, and (v) the dissociation between implicit and explicit CC phenomena. The findings suggest that implicit SL is an inherent component of ongoing processing which operates through clustering, associative, and reinforcement processes at various levels of sensory-motor processing, and might result from simple spike-timing-dependent plasticity.

Good review of similarity measures between elements with semantics

Mohammad Taher Pilehvar, Roberto Navigli, From senses to texts: An all-in-one graph-based approach for measuring semantic similarity, Artificial Intelligence, Volume 228, November 2015, Pages 95-128, ISSN 0004-3702, DOI: 10.1016/j.artint.2015.07.005.

Quantifying semantic similarity between linguistic items lies at the core of many applications in Natural Language Processing and Artificial Intelligence. It has therefore received a considerable amount of research interest, which in its turn has led to a wide range of approaches for measuring semantic similarity. However, these measures are usually limited to handling specific types of linguistic item, e.g., single word senses or entire sentences. Hence, for a downstream application to handle various types of input, multiple measures of semantic similarity are needed, measures that often use different internal representations or have different output scales. In this article we present a unified graph-based approach for measuring semantic similarity which enables effective comparison of linguistic items at multiple levels, from word senses to full texts. Our method first leverages the structural properties of a semantic network in order to model arbitrary linguistic items through a unified probabilistic representation, and then compares the linguistic items in terms of their representations. We report state-of-the-art performance on multiple datasets pertaining to three different levels: senses, words, and texts.

Extending probabilistic logic programming with continuous r.v.s, and a nice and brief introduction to programming logic and probabilistic inference

Steffen Michels, Arjen Hommersom, Peter J.F. Lucas, Marina Velikova, A new probabilistic constraint logic programming language based on a generalised distribution semantics, Artificial Intelligence, Volume 228, November 2015, Pages 1-44, ISSN 0004-3702, DOI: 10.1016/j.artint.2015.06.008.

Probabilistic logics combine the expressive power of logic with the ability to reason with uncertainty. Several probabilistic logic languages have been proposed in the past, each of them with their own features. We focus on a class of probabilistic logic based on Sato’s distribution semantics, which extends logic programming with probability distributions on binary random variables and guarantees a unique probability distribution. For many applications binary random variables are, however, not sufficient and one requires random variables with arbitrary ranges, e.g. real numbers. We tackle this problem by developing a generalised distribution semantics for a new probabilistic constraint logic programming language. In order to perform exact inference, imprecise probabilities are taken as a starting point, i.e. we deal with sets of probability distributions rather than a single one. It is shown that given any continuous distribution, conditional probabilities of events can be approximated arbitrarily close to the true probability. Furthermore, for this setting an inference algorithm that is a generalisation of weighted model counting is developed, making use of SMT solvers. We show that inference has similar complexity properties as precise probabilistic inference, unlike most imprecise methods for which inference is more complex. We also experimentally confirm that our algorithm is able to exploit local structure, such as determinism, which further reduces the computational complexity.

Quantum probability theory as an alternative to classical (Kolgomorov) probability theory for modelling human decision making processes, and a curious description of the effect of a particular ordering of decisions in the complete result

Peter D. Bruza, Zheng Wang, Jerome R. Busemeyer, Quantum cognition: a new theoretical approach to psychology, Trends in Cognitive Sciences, Volume 19, Issue 7, July 2015, Pages 383-393, ISSN 1364-6613, DOI: 10.1016/j.tics.2015.05.001.

What type of probability theory best describes the way humans make judgments under uncertainty and decisions under conflict? Although rational models of cognition have become prominent and have achieved much success, they adhere to the laws of classical probability theory despite the fact that human reasoning does not always conform to these laws. For this reason we have seen the recent emergence of models based on an alternative probabilistic framework drawn from quantum theory. These quantum models show promise in addressing cognitive phenomena that have proven recalcitrant to modeling by means of classical probability theory. This review compares and contrasts probabilistic models based on Bayesian or classical versus quantum principles, and highlights the advantages and disadvantages of each approach.

Transfer learning in reinforcement learning through case-based and the use of heuristics for selecting actions

Reinaldo A.C. Bianchi, Luiz A. Celiberto Jr., Paulo E. Santos, Jackson P. Matsuura, Ramon Lopez de Mantaras, Transferring knowledge as heuristics in reinforcement learning: A case-based approach, Artificial Intelligence, Volume 226, September 2015, Pages 102-121, ISSN 0004-3702, DOI: 10.1016/j.artint.2015.05.008.

The goal of this paper is to propose and analyse a transfer learning meta-algorithm that allows the implementation of distinct methods using heuristics to accelerate a Reinforcement Learning procedure in one domain (the target) that are obtained from another (simpler) domain (the source domain). This meta-algorithm works in three stages: first, it uses a Reinforcement Learning step to learn a task on the source domain, storing the knowledge thus obtained in a case base; second, it does an unsupervised mapping of the source-domain actions to the target-domain actions; and, third, the case base obtained in the first stage is used as heuristics to speed up the learning process in the target domain.
A set of empirical evaluations were conducted in two target domains: the 3D mountain car (using a learned case base from a 2D simulation) and stability learning for a humanoid robot in the Robocup 3D Soccer Simulator (that uses knowledge learned from the Acrobot domain). The results attest that our transfer learning algorithm outperforms recent heuristically-accelerated reinforcement learning and transfer learning algorithms.

Semantic and syntactic bootstrapped learning for robots, inspired in similar processes in humans, that use language as a scaffolding mechanism to improve learning in unknown situations

Worgotter, F.; Geib, C.; Tamosiunaite, M.; Aksoy, E.E.; Piater, J.; Hanchen Xiong; Ude, A.; Nemec, B.; Kraft, D.; Kruger, N.; Wachter, M.; Asfour, T., Structural Bootstrapping—A Novel, Generative Mechanism for Faster and More Efficient Acquisition of Action-Knowledge, Autonomous Mental Development, IEEE Transactions on , vol.7, no.2, pp.140,154, June 2015, DOI: 10.1109/TAMD.2015.2427233.

Humans, but also robots, learn to improve their behavior. Without existing knowledge, learning either needs to be explorative and, thus, slow or-to be more efficient-it needs to rely on supervision, which may not always be available. However, once some knowledge base exists an agent can make use of it to improve learning efficiency and speed. This happens for our children at the age of around three when they very quickly begin to assimilate new information by making guided guesses how this fits to their prior knowledge. This is a very efficient generative learning mechanism in the sense that the existing knowledge is generalized into as-yet unexplored, novel domains. So far generative learning has not been employed for robots and robot learning remains to be a slow and tedious process. The goal of the current study is to devise for the first time a general framework for a generative process that will improve learning and which can be applied at all different levels of the robot’s cognitive architecture. To this end, we introduce the concept of structural bootstrapping-borrowed and modified from child language acquisition-to define a probabilistic process that uses existing knowledge together with new observations to supplement our robot’s data-base with missing information about planning-, object-, as well as, action-relevant entities. In a kitchen scenario, we use the example of making batter by pouring and mixing two components and show that the agent can efficiently acquire new knowledge about planning operators, objects as well as required motor pattern for stirring by structural bootstrapping. Some benchmarks are shown, too, that demonstrate how structural bootstrapping improves performance.

Developmental approach for a robot manipulator that learns in several bootstrapped stages, strongly inspired in infant development

Ugur, E.; Nagai, Y.; Sahin, E.; Oztop, E., Staged Development of Robot Skills: Behavior Formation, Affordance Learning and Imitation with Motionese, Autonomous Mental Development, IEEE Transactions on , vol.7, no.2, pp.119,139, June 2015, DOI: 10.1109/TAMD.2015.2426192.

Inspired by infant development, we propose a three staged developmental framework for an anthropomorphic robot manipulator. In the first stage, the robot is initialized with a basic reach-and- enclose-on-contact movement capability, and discovers a set of behavior primitives by exploring its movement parameter space. In the next stage, the robot exercises the discovered behaviors on different objects, and learns the caused effects; effectively building a library of affordances and associated predictors. Finally, in the third stage, the learned structures and predictors are used to bootstrap complex imitation and action learning with the help of a cooperative tutor. The main contribution of this paper is the realization of an integrated developmental system where the structures emerging from the sensorimotor experience of an interacting real robot are used as the sole building blocks of the subsequent stages that generate increasingly more complex cognitive capabilities. The proposed framework includes a number of common features with infant sensorimotor development. Furthermore, the findings obtained from the self-exploration and motionese guided human-robot interaction experiments allow us to reason about the underlying mechanisms of simple-to-complex sensorimotor skill progression in human infants.

Finding the common utility of actions in several tasks learnt in the same domain in order to reduce the learning cost of reinforcement learning

Rosman, B.; Ramamoorthy, S., Action Priors for Learning Domain Invariances, Autonomous Mental Development, IEEE Transactions on , vol.7, no.2, pp.107,118, June 2015, DOI: 10.1109/TAMD.2015.2419715.

An agent tasked with solving a number of different decision making problems in similar environments has an opportunity to learn over a longer timescale than each individual task. Through examining solutions to different tasks, it can uncover behavioral invariances in the domain, by identifying actions to be prioritized in local contexts, invariant to task details. This information has the effect of greatly increasing the speed of solving new problems. We formalise this notion as action priors, defined as distributions over the action space, conditioned on environment state, and show how these can be learnt from a set of value functions. We apply action priors in the setting of reinforcement learning, to bias action selection during exploration. Aggressive use of action priors performs context based pruning of the available actions, thus reducing the complexity of lookahead during search. We additionally define action priors over observation features, rather than states, which provides further flexibility and generalizability, with the additional benefit of enabling feature selection. Action priors are demonstrated in experiments in a simulated factory environment and a large random graph domain, and show significant speed ups in learning new tasks. Furthermore, we argue that this mechanism is cognitively plausible, and is compatible with findings from cognitive psychology.

Example of application of bayesian network learning and inference to robotics, and a brief but useful related work on learning by imitation

Dan Song; Ek, C.H.; Huebner, K.; Kragic, D., Task-Based Robot Grasp Planning Using Probabilistic Inference, Robotics, IEEE Transactions on , vol.31, no.3, pp.546,561, June 2015, DOI: 10.1109/TRO.2015.2409912.

Grasping and manipulating everyday objects in a goal-directed manner is an important ability of a service robot. The robot needs to reason about task requirements and ground these in the sensorimotor information. Grasping and interaction with objects are challenging in real-world scenarios, where sensorimotor uncertainty is prevalent. This paper presents a probabilistic framework for the representation and modeling of robot-grasping tasks. The framework consists of Gaussian mixture models for generic data discretization, and discrete Bayesian networks for encoding the probabilistic relations among various task-relevant variables, including object and action features as well as task constraints. We evaluate the framework using a grasp database generated in a simulated environment including a human and two robot hand models. The generative modeling approach allows the prediction of grasping tasks given uncertain sensory data, as well as object and grasp selection in a task-oriented manner. Furthermore, the graphical model framework provides insights into dependencies between variables and features relevant for object grasping.

Neural support for the cognitive map: place cells and grid cells

Kate J. Jeffery, Distorting the metric fabric of the cognitive map, Trends in Cognitive Sciences, Volume 19, Issue 6, June 2015, Pages 300-301, ISSN 1364-6613, DOI: 10.1016/j.tics.2015.04.001..

Grid cells are neurons whose regularly spaced firing fields form apparently symmetric arrays, or grids, that are thought to collectively provide an environment-independent metric framework for the brain’s cognitive map of space. However, two recent studies show that grids are naturally distorted, revealing greater local environment-specific effects than previously recognized.