Tag Archives: Hippocampus

A possible explanation for the formation of concepts in the human brain

Luca D. Kolibius, Sheena A. Josselyn, Simon Hanslmayr, On the origin of memory neurons in the human hippocampus, Trends in Cognitive Sciences, Volume 29, Issue 5, 2025, Pages 421-433 10.1016/j.tics.2025.01.013.

The hippocampus is essential for episodic memory, yet its coding mechanism remains debated. In humans, two main theories have been proposed: one suggests that concept neurons represent specific elements of an episode, while another posits a conjunctive code, where index neurons code the entire episode. Here, we integrate new findings of index neurons in humans and other animals with the concept-specific memory framework, proposing that concept neurons evolve from index neurons through overlapping memories. This process is supported by engram literature, which posits that neurons are allocated to a memory trace based on excitability and that reactivation induces excitability. By integrating these insights, we connect two historically disparate fields of neuroscience: engram research and human single neuron episodic memory research.

On the role of the hippocampus in managing the environmental context

Andrew P. Maurer, Lynn Nadel, The Continuity of Context: A Role for the Hippocampus, . Trends in Cognitive Sciences, Volume 25, Issue 3, 2021, Pages 187-199 DOI: 10.1016/j.tics.2020.12.007.

Tracking moment-to-moment change in input and detecting change sufficient to require altering behavior is crucial to survival. Here, we discuss how the brain evaluates change over time, focusing on the hippocampus and its role in tracking context. We leverage the anatomy and physiology of the hippocampal longitudinal axis, re-entrant loops, and amorphous networks to account for stimulus equivalence and the updating of an organism’s sense of its context. Place cells have a central role in tracking contextual continuities and discontinuities across multiple scales, a capacity beyond current models of pattern separation and completion. This perspective highlights the critical role of the hippocampus in both spatial cognition and episodic memory: tracking change and detecting boundaries separating one context, or episode, from another.

The diverse roles of the hippocampus

Daniel Bendor, Hugo J. Spiers, Does the Hippocampus Map Out the Future?, Trends in Cognitive Sciences, Volume 20, Issue 3, March 2016, Pages 167-169, ISSN 1364-6613, DOI: 10.1016/j.tics.2016.01.003.

Decades of research have established two central roles of the hippocampus – memory consolidation and spatial navigation. Recently, a third function of the hippocampus has been proposed: simulating future events. However, claims that the neural patterns underlying simulation occur without prior experience have come under fire in light of newly published data.