Category Archives: Robotics

Spatio-temporal maps for mobile robots: taking into account time into the map

João Machado Santos, Tomáš Krajník, Tom Duckett, Spatio-temporal exploration strategies for long-term autonomy of mobile robots, Robotics and Autonomous Systems, Volume 88, February 2017, Pages 116-126, ISSN 0921-8890, DOI: 10.1016/j.robot.2016.11.016.

We present a study of spatio-temporal environment representations and exploration strategies for long-term deployment of mobile robots in real-world, dynamic environments. We propose a new concept for life-long mobile robot spatio-temporal exploration that aims at building, updating and maintaining the environment model during the long-term deployment. The addition of the temporal dimension to the explored space makes the exploration task a never-ending data-gathering process, which we address by application of information-theoretic exploration techniques to world representations that model the uncertainty of environment states as probabilistic functions of time. We evaluate the performance of different exploration strategies and temporal models on real-world data gathered over the course of several months. The combination of dynamic environment representations with information-gain exploration principles allows to create and maintain up-to-date models of continuously changing environments, enabling efficient and self-improving long-term operation of mobile robots.

Efficient detection of glass obstacles when using a laser rangefinder

Xun Wang, JianGuo Wang, Detecting glass in Simultaneous Localisation and Mapping, Robotics and Autonomous Systems, Volume 88, February 2017, Pages 97-103, ISSN 0921-8890, DOI: 10.1016/j.robot.2016.11.003.

Simultaneous Localisation and Mapping (SLAM) has become one of key technologies used in advanced robot platform. The current state-of-art indoor SLAM with laser scanning rangefinders can provide accurate realtime localisation and mapping service to mobile robotic platforms such as PR2 robot. In recent years, many modern building designs feature large glass panels as one of the key interior fitting elements, e.g. large glass walls. Due to the transparent nature of glass panels, laser rangefinders are unable to produce accurate readings which causes SLAM functioning incorrectly in these environments. In this paper, we propose a simple and effective solution to identify glass panels based on the specular reflection of laser beams from the glass. Specifically, we use a simple technique to detect the reflected light intensity profile around the normal incident angle to the glass panel. Integrating this glass detection method with an existing SLAM algorithm, our SLAM system is able to detect and localise glass obstacles in realtime. Furthermore, the tests we conducted in two office buildings with a PR2 robot show the proposed method can detect ∼ 95% of all glass panels with no false positive detection. The source code of the modified SLAM with glass detection is released as a open source ROS package along with this paper.

Improving sensory information, diagnosis and fault tolerance by using multiple sensors and sensor fusion, with a good related work section (2.3) on fault tolerance on data fusion

Kaci Bader, Benjamin Lussier, Walter Schön, A fault tolerant architecture for data fusion: A real application of Kalman filters for mobile robot localization, Robotics and Autonomous Systems, Volume 88, February 2017, Pages 11-23, ISSN 0921-8890, DOI: 10.1016/j.robot.2016.11.015.

Multisensor perception has an important role in robotics and autonomous systems, providing inputs for critical functions including obstacle detection and localization. It is starting to appear in critical applications such as drones and ADASs (Advanced Driver Assistance Systems). However, this kind of complex system is difficult to validate comprehensively. In this paper we look at multisensor perception systems in relation to an alternative dependability method, namely fault tolerance. We propose an approach for tolerating faults in multisensor data fusion that is based on the more traditional method of duplication–comparison, and that offers detection and recovery services. We detail an example implementation using Kalman filter data fusion for mobile robot localization. We demonstrate its effectiveness in this case study using real data and fault injection.

A nice summary of motion planning

J. J. M. Lunenburg, S. A. M. Coenen, G. J. L. Naus, M. J. G. van de Molengraft and M. Steinbuch, “Motion Planning for Mobile Robots: A Method for the Selection of a Combination of Motion-Planning Algorithms,” in IEEE Robotics & Automation Magazine, vol. 23, no. 4, pp. 107-117, Dec. 2016. DOI: 10.1109/MRA.2015.2510798.

A motion planner for mobile robots is commonly built out of a number of algorithms that solve the two steps of motion planning: 1) representing the robot and its environment and 2) searching a path through the represented environment. However, the available literature on motion planning lacks a generic methodology to arrive at a combination of representations and search algorithm classes for a practical application. This article presents a method to select appropriate algorithm classes that solve both the steps of motion planning and to select a suitable approach to combine those algorithm classes. The method is verified by comparing its outcome with three different motion planners that have been successfully applied on robots in practice.

Insights into the sparsity of graph-SLAM (i.e., in the smoothing / optimization approach to SLAM) and a good formalization of the problem

K. Khosoussi, S. Huang and G. Dissanayake, “A Sparse Separable SLAM Back-End,” in IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1536-1549, Dec. 2016. DOI: 10.1109/TRO.2016.2609394.

We propose a scalable algorithm to take advantage of the separable structure of simultaneous localization and mapping (SLAM). Separability is an overlooked structure of SLAM that distinguishes it from a generic nonlinear least-squares problem. The standard relative-pose and relative-position measurement models in SLAM are affine with respect to robot and features’ positions. Therefore, given an estimate for robot orientation, the conditionally optimal estimate for the rest of the state variables can be easily computed by solving a sparse linear least-squares problem. We propose an algorithm to exploit this intrinsic property of SLAM by stripping the problem down to its nonlinear core, while maintaining its natural sparsity. Our algorithm can be used in conjunction with any Newton-based solver and is applicable to 2-D/3-D pose-graph and feature-based SLAM. Our results suggest that iteratively solving the nonlinear core of SLAM leads to a fast and reliable convergence as compared to the state-of-the-art sparse back-ends.

An excellent survey of metrical SLAM (and of map representations and other issues related to SLAM) as of 2016

C. Cadena et al., “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” in IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1309-1332, Dec. 2016. DOI: 10.1109/TRO.2016.2624754.

Simultaneous localization and mapping (SLAM) consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications and witnessing a steady transition of this technology to industry. We survey the current state of SLAM and consider future directions. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors’ take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved?

A novel particle filter algorithm with an adaptive number of particles, and a curious and interesting table I about the pros and cons of different sensors

T. de J. Mateo Sanguino and F. Ponce Gómez, “Toward Simple Strategy for Optimal Tracking and Localization of Robots With Adaptive Particle Filtering,” in IEEE/ASME Transactions on Mechatronics, vol. 21, no. 6, pp. 2793-2804, Dec. 2016.DOI: 10.1109/TMECH.2016.2531629.

The ability of robotic systems to autonomously understand and/or navigate in uncertain environments is critically dependent on fairly accurate strategies, which are not always optimally achieved due to effectiveness, computational cost, and parameter settings. In this paper, we propose a novel and simple adaptive strategy to increase the efficiency and drastically reduce the computational effort in particle filters (PFs). The purpose of the adaptive approach (dispersion-based adaptive particle filter – DAPF) is to provide higher number of particles during the initial searching state (when the localization presents greater uncertainty) and fewer particles during the subsequent state (when the localization exhibits less uncertainty). With the aim of studying the dynamical PF behavior regarding others and putting the proposed algorithm into practice, we designed a methodology based on different target applications and a Kinect sensor. The various experiments conducted for both color tracking and mobile robot localization problems served to demonstrate that the DAPF algorithm can be further generalized. As a result, the DAPF approach significantly improved the computational performance over two well-known filtering strategies: 1) the classical PF with fixed particle set sizes, and 2) the adaptive technique named Kullback-Leiber distance.

Survey and taxonomy of path planning algorithms

Thi Thoa Mac, Cosmin Copot, Duc Trung Tran, Robin De Keyser, Heuristic approaches in robot path planning: A survey, Robotics and Autonomous Systems, Volume 86, 2016, Pages 13-28, ISSN 0921-8890, DOI: 10.1016/j.robot.2016.08.001.

Autonomous navigation of a robot is a promising research domain due to its extensive applications. The navigation consists of four essential requirements known as perception, localization, cognition and path planning, and motion control in which path planning is the most important and interesting part. The proposed path planning techniques are classified into two main categories: classical methods and heuristic methods. The classical methods consist of cell decomposition, potential field method, subgoal network and road map. The approaches are simple; however, they commonly consume expensive computation and may possibly fail when the robot confronts with uncertainty. This survey concentrates on heuristic-based algorithms in robot path planning which are comprised of neural network, fuzzy logic, nature-inspired algorithms and hybrid algorithms. In addition, potential field method is also considered due to the good results. The strengths and drawbacks of each algorithm are discussed and future outline is provided.

Globally optimal ICP

J. Yang, H. Li, D. Campbell and Y. Jia, “Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 11, pp. 2241-2254, Nov. 1 2016. DOI: 10.1109/TPAMI.2015.2513405.

The Iterative Closest Point (ICP) algorithm is one of the most widely used methods for point-set registration. However, being based on local iterative optimization, ICP is known to be susceptible to local minima. Its performance critically relies on the quality of the initialization and only local optimality is guaranteed. This paper presents the first globally optimal algorithm, named Go-ICP, for Euclidean (rigid) registration of two 3D point-sets under the $L_2$ error metric defined in ICP. The Go-ICP method is based on a branch-and-bound scheme that searches the entire 3D motion space $SE(3)$ . By exploiting the special structure of $SE(3)$ geometry, we derive novel upper and lower bounds for the registration error function. Local ICP is integrated into the BnB scheme, which speeds up the new method while guaranteeing global optimality. We also discuss extensions, addressing the issue of outlier robustness. The evaluation demonstrates that the proposed method is able to produce reliable registration results regardless of the initialization. Go-ICP can be applied in scenarios where an optimal solution is desirable or where a good initialization is not always available.

Learning from demonstration through inverse reinforcement learning enhaced with neural network for generalizing demonstrations and improve visiting of states

Chen Xia, Abdelkader El Kamel, Neural inverse reinforcement learning in autonomous navigation, Robotics and Autonomous Systems, Volume 84, 2016, Pages 1-14, ISSN 0921-8890, DOI: 10.1016/j.robot.2016.06.003.

Designing intelligent and robust autonomous navigation systems remains a great challenge in mobile robotics. Inverse reinforcement learning (IRL) offers an efficient learning technique from expert demonstrations to teach robots how to perform specific tasks without manually specifying the reward function. Most of existing IRL algorithms assume the expert policy to be optimal and deterministic, and are applied to experiments with relatively small-size state spaces. However, in autonomous navigation tasks, the state spaces are frequently large and demonstrations can hardly visit all the states. Meanwhile the expert policy may be non-optimal and stochastic. In this paper, we focus on IRL with large-scale and high-dimensional state spaces by introducing the neural network to generalize the expert’s behaviors to unvisited regions of the state space and an explicit policy representation is easily expressed by neural network, even for the stochastic expert policy. An efficient and convenient algorithm, Neural Inverse Reinforcement Learning (NIRL), is proposed. Experimental results on simulated autonomous navigation tasks show that a mobile robot using our approach can successfully navigate to the target position without colliding with unpredicted obstacles, largely reduce the learning time, and has a good generalization performance on undemonstrated states. Hence prove the robot intelligence of autonomous navigation transplanted from limited demonstrations to completely unknown tasks.