Tag Archives: Mapping Of Dynamic Environments

Probabilistic SLAM is still the way to go for dynamic environments (according to this paper)

C. Evers and P. A. Naylor, Optimized Self-Localization for SLAM in Dynamic Scenes Using Probability Hypothesis Density Filters, IEEE Transactions on Signal Processing, vol. 66, no. 4, pp. 863-878, DOI: 10.1109/TSP.2017.2775590.

In many applications, sensors that map the positions of objects in unknown environments are installed on dynamic platforms. As measurements are relative to the observer’s sensors, scene mapping requires accurate knowledge of the observer state. However, in practice, observer reports are subject to positioning errors. Simultaneous localization and mapping addresses the joint estimation problem of observer localization and scene mapping. State-of-the-art approaches typically use visual or optical sensors and therefore rely on static beacons in the environment to anchor the observer estimate. However, many applications involving sensors that are not conventionally used for Simultaneous Localization and Mapping (SLAM) are affected by highly dynamic scenes, such that the static world assumption is invalid. This paper proposes a novel approach for dynamic scenes, called GEneralized Motion (GEM) SLAM. Based on probability hypothesis density filters, the proposed approach probabilistically anchors the observer state by fusing observer information inferred from the scene with reports of the observer motion. This paper derives the general, theoretical framework for GEM-SLAM, and shows that it generalizes existing Probability Hypothesis Density (PHD)-based SLAM algorithms. Simulations for a model-specific realization using range-bearing sensors and multiple moving objects highlight that GEM-SLAM achieves significant improvements over three benchmark algorithms.

Taking into account explicitly the dynamics of the environment, and in particular the diverse frequencies of changes, for mobile robot mapping

T. Krajník, J. P. Fentanes, J. M. Santos and T. Duckett, FreMEn: Frequency Map Enhancement for Long-Term Mobile Robot Autonomy in Changing Environments, IEEE Transactions on Robotics, vol. 33, no. 4, pp. 964-977, DOI: 10.1109/TRO.2017.2665664.

We present a new approach to long-term mobile robot mapping in dynamic indoor environments. Unlike traditional world models that are tailored to represent static scenes, our approach explicitly models environmental dynamics. We assume that some of the hidden processes that influence the dynamic environment states are periodic and model the uncertainty of the estimated state variables by their frequency spectra. The spectral model can represent arbitrary timescales of environment dynamics with low memory requirements. Transformation of the spectral model to the time domain allows for the prediction of the future environment states, which improves the robot’s long-term performance in changing environments. Experiments performed over time periods of months to years demonstrate that the approach can efficiently represent large numbers of observations and reliably predict future environment states. The experiments indicate that the model’s predictive capabilities improve mobile robot localization and navigation in changing environments.

Spatio-temporal maps for mobile robots: taking into account time into the map

João Machado Santos, Tomáš Krajník, Tom Duckett, Spatio-temporal exploration strategies for long-term autonomy of mobile robots, Robotics and Autonomous Systems, Volume 88, February 2017, Pages 116-126, ISSN 0921-8890, DOI: 10.1016/j.robot.2016.11.016.

We present a study of spatio-temporal environment representations and exploration strategies for long-term deployment of mobile robots in real-world, dynamic environments. We propose a new concept for life-long mobile robot spatio-temporal exploration that aims at building, updating and maintaining the environment model during the long-term deployment. The addition of the temporal dimension to the explored space makes the exploration task a never-ending data-gathering process, which we address by application of information-theoretic exploration techniques to world representations that model the uncertainty of environment states as probabilistic functions of time. We evaluate the performance of different exploration strategies and temporal models on real-world data gathered over the course of several months. The combination of dynamic environment representations with information-gain exploration principles allows to create and maintain up-to-date models of continuously changing environments, enabling efficient and self-improving long-term operation of mobile robots.

A nice SLAM approach based on hybrid Normal Distribution Transform (NDT) + occupancy grid maps intended for long term operation in dynamic environments

Erik Einhorn, Horst-Michael Gross, Generic NDT mapping in dynamic environments and its application for lifelong SLAM, Robotics and Autonomous Systems, Volume 69, July 2015, Pages 28-39, ISSN 0921-8890, DOI: 10.1016/j.robot.2014.08.008.

In this paper, we present a new, generic approach for Simultaneous Localization and Mapping (SLAM). First of all, we propose an abstraction of the underlying sensor data using Normal Distribution Transform (NDT) maps that are suitable for making our approach independent from the used sensor and the dimension of the generated maps. We present several modifications for the original NDT mapping to handle free-space measurements explicitly. We additionally describe a method to detect and handle dynamic objects such as moving persons. This enables the usage of the proposed approach in highly dynamic environments. In the second part of this paper we describe our graph-based SLAM approach that is designed for lifelong usage. Therefore, the memory and computational complexity is limited by pruning the pose graph in an appropriate way.