Tag Archives: Bayesian Optimization

Robots that pre-compute a number of possible behaviours (in simulation) and then learn their performance with them (propragating that performance measures to similar behaviors through Gaussian Processes Regression) and select the best at each situation (through Bayesian Optimization), thus confronting varying environments and damages to the robot

A. Cully, et al. Robots that can adapt like animals, Nature, 521 (2015), pp. 503–507, DOI: 10.1038/nature14422.

Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot think outside the box to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robotâ €™ s prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles that animals use to adapt to injury.

How to improve statistical results obtained from limited set-ups through active sampling, and a nice review of possible pitfalls in conducting statistical research (and a mention to “pre-registration” of hypothesis and plans to be peer-reviewed before submitting the results)

Romy Lorenz, Adam Hampshire, Robert Leech, Neuroadaptive Bayesian Optimization and Hypothesis Testing, Trends in Cognitive Sciences, Volume 21, Issue 3, March 2017, Pages 155-167, ISSN 1364-6613, DOI: 10.1016/j.tics.2017.01.006.

Cognitive neuroscientists are often interested in broad research questions, yet use overly narrow experimental designs by considering only a small subset of possible experimental conditions. This limits the generalizability and reproducibility of many research findings. Here, we propose an alternative approach that resolves these problems by taking advantage of recent developments in real-time data analysis and machine learning. Neuroadaptive Bayesian optimization is a powerful strategy to efficiently explore more experimental conditions than is currently possible with standard methodology. We argue that such an approach could broaden the hypotheses considered in cognitive science, improving the generalizability of findings. In addition, Bayesian optimization can be combined with preregistration to cover exploration, mitigating researcher bias more broadly and improving reproducibility.