Tag Archives: Quadcopters

Selecting the best visual cues in the next future for reducing the computational cost of localization under limited computational resources

L. Carlone and S. Karaman, Attention and Anticipation in Fast Visual-Inertial Navigation, IEEE Transactions on Robotics, vol. 35, no. 1, pp. 1-20, Feb. 2019 DOI: 10.1109/TRO.2018.2872402.

We study a visual-inertial navigation (VIN) problem in which a robot needs to estimate its state using an on-board camera and an inertial sensor, without any prior knowledge of the external environment. We consider the case in which the robot can allocate limited resources to VIN, due to tight computational constraints. Therefore, we answer the following question: under limited resources, what are the most relevant visual cues to maximize the performance of VIN? Our approach has four key ingredients. First, it is task-driven, in that the selection of the visual cues is guided by a metric quantifying the VIN performance. Second, it exploits the notion of anticipation, since it uses a simplified model for forward-simulation of robot dynamics, predicting the utility of a set of visual cues over a future time horizon. Third, it is efficient and easy to implement, since it leads to a greedy algorithm for the selection of the most relevant visual cues. Fourth, it provides formal performance guarantees: we leverage submodularity to prove that the greedy selection cannot be far from the optimal (combinatorial) selection. Simulations and real experiments on agile drones show that our approach ensures state-of-the-art VIN performance while maintaining a lean processing time. In the easy scenarios, our approach outperforms appearance-based feature selection in terms of localization errors. In the most challenging scenarios, it enables accurate VIN while appearance-based feature selection fails to track robot’s motion during aggressive maneuvers.

Using EKF to estimate the state of a quadcopter in SE(3)

Goodarzi, F.A. & Lee, Global Formulation of an Extended Kalman Filter on SE(3) for Geometric Control of a Quadrotor UAV, J Intell Robot Syst (2017) 88: 395, DOI: 10.1007/s10846-017-0525-6.

An extended Kalman filter (EKF) is developed on the special Euclidean group, S E(3) for geometric control of a quadrotor UAV. It is obtained by performing an intrinsic form of linearization on S E(3) to estimate the state of the quadrotor from noisy measurements. The proposed estimator considers all of the coupling effects between rotational and translational dynamics, and it is developed in a coordinate-free fashion. The desirable features of the proposed EKF are illustrated by numerical examples and experimental results for several scenarios. The proposed estimation scheme on S E(3) has been unprecedented and these results can be particularly useful for aggressive maneuvers in GPS denied environments or in situations where parts of onboard sensors fail.