Scanavino, M., Vilardi, A. & Guglieri, G. An Experimental Analysis on Propeller Performance in a Climate-controlled Facility. J Intell Robot Syst 100, 505–517 (2020) DOI: 10.1007/s10846-019-01132-9.
Despite many commercial applications make extensive use of Unmanned Aircraft Systems (UAS), there is still lack of published data about their performance under unconventional weather conditions. In the last years, multirotors and fixed wing vehicles, commonly referred to as drones, have been studied in wind environments so that stability and controllability have been improved. However, other important weather variables have impact on UAS performance and they should be properly investigated for a deeper understanding of such vehicles. The primary objective of our study is the preliminary characterization of a propeller in a climate-controlled chamber. Mechanical and electrical data have been measured while testing the propeller at low pressure and cold temperatures. Test results point out that thrust and electric power are strongly affected by air density. A comparison between the experimental data and the results of the Blade Element Theory is carried out to assess the theory capability to estimate thrust in unconventional environments. The overlap between experimental data and theory computation is appropriate despite geometrical uncertainties and corroborate the need of a reliable aerodynamic database. Propeller performance data under unconventional atmospheres will be leveraged to improve UAS design, propulsion system modelling as well as provide guidelines to certify operations in extreme environments.