Tag Archives: Human Creativity

On how sleep improves our problem-solving capabilities

Penelope A. Lewis, Günther Knoblich, Gina Poe, How Memory Replay in Sleep Boosts Creative Problem-Solving, Trends in Cognitive Sciences, Volume 22, Issue 6, 2018, Pages 491-503 DOI: 10.1016/j.tics.2018.03.009.

Creative thought relies on the reorganisation of existing knowledge. Sleep is known to be important for creative thinking, but there is a debate about which sleep stage is most relevant, and why. We address this issue by proposing that rapid eye movement sleep, or ‘REM’, and non-REM sleep facilitate creativity in different ways. Memory replay mechanisms in non-REM can abstract rules from corpuses of learned information, while replay in REM may promote novel associations. We propose that the iterative interleaving of REM and non-REM across a night boosts the formation of complex knowledge frameworks, and allows these frameworks to be restructured, thus facilitating creative thought. We outline a hypothetical computational model which will allow explicit testing of these hypotheses.

How hierarchical reinforcement learning resembles human creativity, i.e., matching the psychological aspects with the engineering ones

Thomas R. Colin, Tony Belpaeme, Angelo Cangelosi, Nikolas Hemion, Hierarchical reinforcement learning as creative problem solving, Robotics and Autonomous Systems, Volume 86, 2016, Pages 196-206, ISSN 0921-8890, DOI: 10.1016/j.robot.2016.08.021.

Although creativity is studied from philosophy to cognitive robotics, a definition has proven elusive. We argue for emphasizing the creative process (the cognition of the creative agent), rather than the creative product (the artifact or behavior). Owing to developments in experimental psychology, the process approach has become an increasingly attractive way of characterizing creative problem solving. In particular, the phenomenon of insight, in which an individual arrives at a solution through a sudden change in perspective, is a crucial component of the process of creativity. These developments resonate with advances in machine learning, in particular hierarchical and modular approaches, as the field of artificial intelligence aims for general solutions to problems that typically rely on creativity in humans or other animals. We draw a parallel between the properties of insight according to psychology and the properties of Hierarchical Reinforcement Learning (HRL) systems for embodied agents. Using the Creative Systems Framework developed by Wiggins and Ritchie, we analyze both insight and HRL, establishing that they are creative in similar ways. We highlight the key challenges to be met in order to call an artificial system “insightful”.