Tag Archives: Coverage Problem

On how sleep improves our problem-solving capabilities

Penelope A. Lewis, Günther Knoblich, Gina Poe, How Memory Replay in Sleep Boosts Creative Problem-Solving, Trends in Cognitive Sciences, Volume 22, Issue 6, 2018, Pages 491-503 DOI: 10.1016/j.tics.2018.03.009.

Creative thought relies on the reorganisation of existing knowledge. Sleep is known to be important for creative thinking, but there is a debate about which sleep stage is most relevant, and why. We address this issue by proposing that rapid eye movement sleep, or ‘REM’, and non-REM sleep facilitate creativity in different ways. Memory replay mechanisms in non-REM can abstract rules from corpuses of learned information, while replay in REM may promote novel associations. We propose that the iterative interleaving of REM and non-REM across a night boosts the formation of complex knowledge frameworks, and allows these frameworks to be restructured, thus facilitating creative thought. We outline a hypothetical computational model which will allow explicit testing of these hypotheses.

A novel algorithm for coverage path planning with very strong guarantees

J. Song and S. Gupta, $varepsilon ^{star }$: An Online Coverage Path Planning Algorithm, IEEE Transactions on Robotics, vol. 34, no. 2, pp. 526-533, DOI: 10.1109/TRO.2017.2780259.

This paper presents an algorithm called ε*, for online coverage path planning of unknown environment. The algorithm is built upon the concept of an Exploratory Turing Machine (ETM), which acts as a supervisor to the autonomous vehicle to guide it with adaptive navigation commands. The ETM generates a coverage path online using Multiscale Adaptive Potential Surfaces (MAPS), which are hierarchically structured and dynamically updated based on sensor information. The ε*-algorithm is computationally efficient, guarantees complete coverage, and does not suffer from the local extrema problem. Its performance is validated by 1) high-fidelity simulations on Player/Stage and 2) actual experiments in a laboratory setting on autonomous vehicles.