Tag Archives: Topological Maps

Predicting the structure of indoor environments for mobile robots

Matteo Luperto, Francesco Amigoni, Predicting the global structure of indoor environments: A constructive machine learning approach, Autonomous Robots, April 2019, Volume 43, Issue 4, pp 813–835, DOI: 10.1007/s10514-018-9732-7.

Consider a mobile robot exploring an initially unknown school building and assume that it has already discovered some corridors, classrooms, offices, and bathrooms. What can the robot infer about the presence and the locations of other classrooms and offices and, more generally, about the structure of the rest of the building? This paper presents a system that makes a step towards providing an answer to the above question. The proposed system is based on a generative model that is able to represent the topological structures and the semantic labeling schemas of buildings and to generate plausible hypotheses for unvisited portions of these environments. We represent the buildings as undirected graphs, whose nodes are rooms and edges are physical connections between them. Given an initial knowledge base of graphs, our approach, relying on constructive machine learning techniques, segments each graph for finding significant subgraphs and clusters them according to their similarity, which is measured using graph kernels. A graph representing a new building or an unvisited part of a building is eventually generated by sampling subgraphs from clusters and connecting them.

A novel hybridization of semantic and topological maps applied to mapping and localization in outdoors

Fernando Bernuy, Javier Ruiz-del-Solar, Topological Semantic Mapping and Localization in Urban Road Scenarios, Journal of Intelligent & Robotic Systems, September 2018, Volume 92, Issue 1, pp 19–32, DOI: 10.1007/s10846-017-0744-x.

Autonomous vehicle self-localization must be robust to environment changes, such as dynamic objects, variable illumination, and atmospheric conditions. Topological maps provide a concise representation of the world by only keeping information about relevant places, being robust to environment changes. On the other hand, semantic maps correspond to a high level representation of the environment that includes labels associated with relevant objects and places. Hence, the use of a topological map based on semantic information represents a robust and efficient solution for large-scale outdoor scenes for autonomous vehicles and Advanced Driver Assistance Systems (ADAS). In this work, a novel topological semantic mapping and localization methodology for large-scale outdoor scenarios for autonomous driving and ADAS applications is presented. The methodology uses: (i) a deep neural network for obtaining semantic observations of the environment, (ii) a Topological Semantic Map (TSM) for storing selected semantic observations, and (iii) a topological localization algorithm which uses a Particle Filter for obtaining the vehicle’s pose in the TSM. The proposed methodology was tested on a real driving scenario, where a True Estimate Rate of the vehicle’s pose of 96.9% and a Mean Position Accuracy of 7.7[m] were obtained. These results are much better than the ones obtained by other two methods used for comparative purposes. Experiments also show that the method is able to obtain the pose of the vehicle when its initial pose is unknown.

A nice hybridization of RBPF, high-frequency scan matching and topological maps to perform SLAM, with an also nice state-of-the-art

Aristeidis G. Thallas, Emmanouil G. Tsardoulias, Loukas Petrou, Topological Based Scan Matching – Odometry Posterior Sampling in RBPF Under Kinematic Model Failures, Journal of Intelligent & Robotic Systems, September 2018, Volume 91, Issue 3–4, pp 543–568, DOI: 10.1007/s10846-017-0730-3.

Rao-Blackwellized Particle Filters (RBPF) have been utilized to provide a solution to the SLAM problem. One of the main factors that cause RBPF failure is the potential particle impoverishment. Another popular approach to the SLAM problem are Scan Matching methods, whose good results require environments with lots of information, however fail in the lack thereof. To face these issues, in the current work techniques are presented to combine Rao-Blackwellized particle filters with a scan matching algorithm (CRSM SLAM). The particle filter maintains the correct hypothesis in environments lacking features and CRSM is employed in feature-rich environments while simultaneously reduces the particle filter dispersion. Since CRSM’s good performance is based on its high iteration frequency, a multi-threaded combination is presented which allows CRSM to operate while RBPF updates its particles. Additionally, a novel method utilizing topological information is proposed, in order to reduce the number of particle filter resamplings. Finally, we present methods to address anomalous situations where scan matching can not be performed and the vehicle displays behaviors not modeled by the kinematic model, causing the whole method to collapse. Numerous experiments are conducted to support the aforementioned methods’ advantages.

Novel algorithm for inexact graph matching of moderate size graphs based on Gaussian process regression

Serradell, E.; Pinheiro, M.A.; Sznitman, R.; Kybic, J.; Moreno-Noguer, F.; Fua, P., (2015), Non-Rigid Graph Registration Using Active Testing Search, Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.37, no.3, pp.625,638. DOI: http://doi.org/10.1109/TPAMI.2014.2343235

.

We present a new approach for matching sets of branching curvilinear structures that form graphs embedded in R^2 or R^3 and may be subject to deformations. Unlike earlier methods, ours does not rely on local appearance similarity nor does require a good initial alignment. Furthermore, it can cope with non-linear deformations, topological differences, and partial graphs. To handle arbitrary non-linear deformations, we use Gaussian process regressions to represent the geometrical mapping relating the two graphs. In the absence of appearance information, we iteratively establish correspondences between points, update the mapping accordingly, and use it to estimate where to find the most likely correspondences that will be used in the next step. To make the computation tractable for large graphs, the set of new potential matches considered at each iteration is not selected at random as with many RANSAC-based algorithms. Instead, we introduce a so-called Active Testing Search strategy that performs a priority search to favor the most likely matches and speed-up the process. We demonstrate the effectiveness of our approach first on synthetic cases and then on angiography data, retinal fundus images, and microscopy image stacks acquired at very different resolutions.

A survey on topological localization and mapping

Emilio Garcia-Fidalgo, Alberto Ortiz, Vision-based topological mapping and localization methods: A survey , Robotics and Autonomous Systems, Volume 64, February 2015, Pages 1-20, ISSN 0921-8890, DOI: 10.1016/j.robot.2014.11.009

.

Topological maps model the environment as a graph, where nodes are distinctive places of the environment and edges indicate topological relationships between them. They represent an interesting alternative to the classic metric maps, due to their simplicity and storage needs, what has made topological mapping and localization an active research area. The different solutions that have been proposed during years have been designed around several kinds of sensors. However, in the last decades, vision approaches have emerged because of the technology improvements and the amount of useful information that a camera can provide. In this paper, we review the main solutions presented in the last fifteen years, and classify them in accordance to the kind of image descriptor employed. Advantages and disadvantages of each approach are thoroughly reviewed and discussed.