#### Matteo Luperto, Francesco Amigoni, **Predicting the global structure of indoor environments: A constructive machine learning approach**, Autonomous Robots, April 2019, Volume 43, Issue 4, pp 813–835, DOI: 10.1007/s10514-018-9732-7.

Consider a mobile robot exploring an initially unknown school building and assume that it has already discovered some corridors, classrooms, offices, and bathrooms. What can the robot infer about the presence and the locations of other classrooms and offices and, more generally, about the structure of the rest of the building? This paper presents a system that makes a step towards providing an answer to the above question. The proposed system is based on a generative model that is able to represent the topological structures and the semantic labeling schemas of buildings and to generate plausible hypotheses for unvisited portions of these environments. We represent the buildings as undirected graphs, whose nodes are rooms and edges are physical connections between them. Given an initial knowledge base of graphs, our approach, relying on constructive machine learning techniques, segments each graph for finding significant subgraphs and clusters them according to their similarity, which is measured using graph kernels. A graph representing a new building or an unvisited part of a building is eventually generated by sampling subgraphs from clusters and connecting them.