Learning concepts from graphs in robotics, through first-order logic and discovery of subgraphs, forming arbitrary hierarchies

Ana C. Tenorio-González, Eduardo F. Morales, Automatic discovery of relational concepts by an incremental graph-based representation, Robotics and Autonomous Systems, Volume 83, 2016, Pages 1-14, ISSN 0921-8890, DOI: 10.1016/j.robot.2016.06.012.

Automatic discovery of concepts has been an elusive area in machine learning. In this paper, we describe a system, called ADC, that automatically discovers concepts in a robotics domain, performing predicate invention. Unlike traditional approaches of concept discovery, our approach automatically finds and collects instances of potential relational concepts. An agent, using ADC, creates an incremental graph-based representation with the information it gathers while exploring its environment, from which common sub-graphs are identified. The subgraphs discovered are instances of potential relational concepts which are induced with Inductive Logic Programming and predicate invention. Several concepts can be induced concurrently and the learned concepts can form arbitrarily hierarchies. The approach was tested for learning concepts of polygons, furniture, and floors of buildings with a simulated robot and compared with concepts suggested by users.

Survey of model-based reinforcement learning (and of reinforcement learning in general), for its application to improve learning time in robotics; a lot of references but not so many -or clear- explanations

Athanasios S. Polydoros, Lazaros Nalpantidis, Survey of Model-Based Reinforcement Learning: Applications on Robotics, Journal of Intelligent & Robotic Systems, May 2017, Volume 86, Issue 2, pp 153–173, DOI: 10.1007/s10846-017-0468-y.

Reinforcement learning is an appealing approach for allowing robots to learn new tasks. Relevant literature reveals a plethora of methods, but at the same time makes clear the lack of implementations for dealing with real life challenges. Current expectations raise the demand for adaptable robots. We argue that, by employing model-based reinforcement learning, the—now limited—adaptability characteristics of robotic systems can be expanded. Also, model-based reinforcement learning exhibits advantages that makes it more applicable to real life use-cases compared to model-free methods. Thus, in this survey, model-based methods that have been applied in robotics are covered. We categorize them based on the derivation of an optimal policy, the definition of the returns function, the type of the transition model and the learned task. Finally, we discuss the applicability of model-based reinforcement learning approaches in new applications, taking into consideration the state of the art in both algorithms and hardware.

Emergence of symbols in robotics as a “new” area of research in developmental robotics: a survey

Tadahiro Taniguchi, Takayuki Nagai, Tomoaki Nakamura, Naoto Iwahashi, Tetsuya Ogata, Hideki Asoh, Symbol Emergence in Robotics: A Survey, arXiv:1509.08973.

Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory–motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.

A nive review of reinforcement learning from the perspective of its physiological foundations and its application to Robotics

Cornelius Weber, Mark Elshaw, Stefan Wermter, Jochen Triesch and Christopher Willmot, Reinforcement Learning Embedded in Brains and Robots, Reinforcement Learning: Theory and Applications, Book edited by Cornelius Weber, Mark Elshaw and Norbert Michael Mayer, ISBN 978-3-902613-14-1, pp.424, January 2008, I-Tech Education and Publishing, Vienna, Austria. (Local copy)

A computational cognitive architecture that models emotion

Ron Sun, Nick Wilson, Michael Lynch, Emotion: A Unified Mechanistic Interpretation from a Cognitive Architecture, Cognitive Computation, February 2016, Volume 8, Issue 1, pp 1–14, DOI: 10.1007/s12559-015-9374-4.

This paper reviews a project that attempts to interpret emotion, a complex and multifaceted phenomenon, from a mechanistic point of view, facilitated by an existing comprehensive computational cognitive architecture—CLARION. This cognitive architecture consists of a number of subsystems: the action-centered, non-action-centered, motivational, and metacognitive subsystems. From this perspective, emotion is, first and foremost, motivationally based. It is also action-oriented. It involves many other identifiable cognitive functionalities within these subsystems. Based on these functionalities, we fit the pieces together mechanistically (computationally) within the CLARION framework and capture a variety of important aspects of emotion as documented in the literature.

Combination of several mobile robot localization methods in order to achieve high accuracy in industrial environments, with interesting figures for current localization accuracy achievable by standard solutions

Goran Vasiljevi, Damjan Mikli, Ivica Draganjac, Zdenko Kovai, Paolo Lista, High-accuracy vehicle localization for autonomous warehousing, Robotics and Computer-Integrated Manufacturing, Volume 42, December 2016, Pages 1-16, ISSN 0736-5845, DOI: 10.1016/j.rcim.2016.05.001.

The research presented in this paper aims to bridge the gap between the latest scientific advances in autonomous vehicle localization and the industrial state of the art in autonomous warehousing. Notwithstanding great scientific progress in the past decades, industrial autonomous warehousing systems still rely on external infrastructure for obtaining their precise location. This approach increases warehouse installation costs and decreases system reliability, as it is sensitive to measurement outliers and the external localization infrastructure can get dirty or damaged. Several approaches, well studied in scientific literature, are capable of determining vehicle position based only on information provided by on board sensors, most commonly wheel encoders and laser scanners. However, scientific results published to date either do not provide sufficient accuracy for industrial applications, or have not been extensively tested in realistic, industrial-like operating conditions. In this paper, we combine several well established algorithms into a high-precision localization pipeline, capable of computing the pose of an autonomous forklift to sub-centimeter precision. The algorithms use only odometry information from wheel encoders and range readings from an on board laser scanner. The effectiveness of the proposed solution is evaluated by an extensive experiment that lasted for several days, and was performed in a realistic industrial-like environment.

On how the calculus of utility of actions drives many human behaviours

Julian Jara-Ettinger, Hyowon Gweon, Laura E. Schulz, Joshua B. Tenenbaum, The Naïve Utility Calculus: Computational Principles Underlying Commonsense Psychology, Trends in Cognitive Sciences, Volume 20, Issue 8, 2016, Pages 589-604, ISSN 1364-6613, DOI: 10.1016/j.tics.2016.05.011.

We propose that human social cognition is structured around a basic understanding of ourselves and others as intuitive utility maximizers: from a young age, humans implicitly assume that agents choose goals and actions to maximize the rewards they expect to obtain relative to the costs they expect to incur. This \u2018naïve utility calculus\u2019 allows both children and adults observe the behavior of others and infer their beliefs and desires, their longer-term knowledge and preferences, and even their character: who is knowledgeable or competent, who is praiseworthy or blameworthy, who is friendly, indifferent, or an enemy. We review studies providing support for the naïve utility calculus, and we show how it captures much of the rich social reasoning humans engage in from infancy.

Evidences that the brain encodes numbers on an internal continous line and that the zero value is also represented

Luca Rinaldi, Luisa Girelli, A Place for Zero in the Brain, Trends in Cognitive Sciences, Volume 20, Issue 8, 2016, Pages 563-564, ISSN 1364-6613, DOI: 10.1016/j.tics.2016.06.006.

It has long been thought that the primary cognitive and neural systems responsible for processing numerosities are not predisposed to encode empty sets (i.e., numerosity zero). A new study challenges this view by demonstrating that zero is translated into an abstract quantity along the numerical continuum by the primate parietofrontal magnitude system.

Value iteration applied to continuous LTI systems control

Tao Bian, Zhong-Ping Jiang, Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design, Automatica, Volume 71, September 2016, Pages 348-360, ISSN 0005-1098, DOI: 10.1016/j.automatica.2016.05.003.

This paper presents a novel non-model-based, data-driven adaptive optimal controller design for linear continuous-time systems with completely unknown dynamics. Inspired by the stochastic approximation theory, a continuous-time version of the traditional value iteration (VI) algorithm is presented with rigorous convergence analysis. This VI method is crucial for developing new adaptive dynamic programming methods to solve the adaptive optimal control problem and the stochastic robust optimal control problem for linear continuous-time systems. Fundamentally different from existing results, the a priori knowledge of an initial admissible control policy is no longer required. The efficacy of the proposed methodology is illustrated by two examples and a brief comparative study between VI and earlier policy-iteration methods.

A variant of particle filters that uses feedback to model how particles move towards the real posterior

T. Yang, P.~G. Mehta, S.~P. Meyn, Feedback particle filter, IEEE Transactions on Automatic Control, 58 (10) (2013), pp. 2465â–2480, DOI: 10.1109/TAC.2013.2258825.

The feedback particle filter introduced in this paper is a new approach to approximate nonlinear filtering, motivated by techniques from mean-field game theory. The filter is defined by an ensemble of controlled stochastic systems (the particles). Each particle evolves under feedback control based on its own state, and features of the empirical distribution of the ensemble. The feedback control law is obtained as the solution to an optimal control problem, in which the optimization criterion is the Kullback-Leibler divergence between the actual posterior, and the common posterior of any particle. The following conclusions are obtained for diffusions with continuous observations: 1) The optimal control solution is exact: The two posteriors match exactly, provided they are initialized with identical priors. 2) The optimal filter admits an innovation error-based gain feedback structure. 3) The optimal feedback gain is obtained via a solution of an Euler-Lagrange boundary value problem; the feedback gain equals the Kalman gain in the linear Gaussian case. Numerical algorithms are introduced and implemented in two general examples, and a neuroscience application involving coupled oscillators. In some cases it is found that the filter exhibits significantly lower variance when compared to the bootstrap particle filter.