Tag Archives: Cognitive Control

On the limitations of cognitive control from the human psychological perspective

Tarek Amer, Karen L. Campbell, Lynn Hasher, Cognitive Control As a Double-Edged Sword, Trends in Cognitive Sciences, Volume 20, Issue 12, 2016, Pages 905-915, ISSN 1364-6613, DOI: 10.1016/j.tics.2016.10.002.

Cognitive control, the ability to limit attention to goal-relevant information, aids performance on a wide range of laboratory tasks. However, there are many day-to-day functions which require little to no control and others which even benefit from reduced control. We review behavioral and neuroimaging evidence demonstrating that reduced control can enhance the performance of both older and, under some circumstances, younger adults. Using healthy aging as a model, we demonstrate that decreased cognitive control benefits performance on tasks ranging from acquiring and using environmental information to generating creative solutions to problems. Cognitive control is thus a double-edged sword – aiding performance on some tasks when fully engaged, and many others when less engaged.

Cognitive control: a nice bunch of definitions and state-of-the-art

S. Haykin, M. Fatemi, P. Setoodeh and Y. Xue, Cognitive Control, in Proceedings of the IEEE, vol. 100, no. 12, pp. 3156-3169, Dec. 2012., DOI: 10.1109/JPROC.2012.2215773.

This paper is inspired by how cognitive control manifests itself in the human brain and does so in a remarkable way. It addresses the many facets involved in the control of directed information flow in a dynamic system, culminating in the notion of information gap, defined as the difference between relevant information (useful part of what is extracted from the incoming measurements) and sufficient information representing the information needed for achieving minimal risk. The notion of information gap leads naturally to how cognitive control can itself be defined. Then, another important idea is described, namely the two-state model, in which one is the system’s state and the other is the entropic state that provides an essential metric for quantifying the information gap. The entropic state is computed in the perceptual part (i.e., perceptor) of the dynamic system and sent to the controller directly as feedback information. This feedback information provides the cognitive controller the information needed about the environment and the system to bring reinforcement leaning into play; reinforcement learning (RL), incorporating planning as an integral part, is at the very heart of cognitive control. The stage is now set for a computational experiment, involving cognitive radar wherein the cognitive controller is enabled to control the receiver via the environment. The experiment demonstrates how RL provides the mechanism for improved utilization of computational resources, and yet is able to deliver good performance through the use of planning. The paper finishes with concluding remarks.