Category Archives: Cognitive Sciences

Emergence of number meaning from sensorimotor experiences

Elena Sixtus, Florian Krause, Oliver Lindemann, Martin H. Fischer, A sensorimotor perspective on numerical cognition, Trends in Cognitive Sciences, Volume 27, Issue 4, 2023, Pages 367-378 DOI: 10.1016/j.tics.2023.01.002.

Numbers are present in every part of modern society and the human capacity to use numbers is unparalleled in other species. Understanding the mental and neural representations supporting this capacity is of central interest to cognitive psychology, neuroscience, and education. Embodied numerical cognition theory suggests that beyond the seemingly abstract symbols used to refer to numbers, their underlying meaning is deeply grounded in sensorimotor experiences, and that our specific understanding of numerical information is shaped by actions related to our fingers, egocentric space, and experiences with magnitudes in everyday life. We propose a sensorimotor perspective on numerical cognition in which number comprehension and numerical proficiency emerge from grounding three distinct numerical core concepts: magnitude, ordinality, and cardinality.

Review of emotions in AI

G. Assun��o, B. Patr�o, M. Castelo-Branco and P. Menezes, An Overview of Emotion in Artificial Intelligence, IEEE Transactions on Artificial Intelligence, vol. 3, no. 6, pp. 867-886, Dec. 2022 DOI: 10.1109/TAI.2022.3159614.

The field of artificial intelligence (AI) has gained immense traction over the past decade, producing increasingly successful applications as research strives to understand and exploit neural processing specifics. Nonetheless emotion, despite its demonstrated significance to reinforcement, social integration, and general development, remains a largely stigmatized and consequently disregarded topic by most engineers and computer scientists. In this article, we endorse emotion\u2019s value for the advancement of artificial cognitive processing, as well as explore real-world use cases of emotion-augmented AI. A schematization is provided on the psychological-neurophysiologic basics of emotion in order to bridge the interdisciplinary gap preventing emulation and integration in AI methodology, as well as exploitation by current systems. In addition, we overview three major subdomains of AI greatly benefiting from emotion, and produce a systematic survey of meaningful yet recent contributions to each area. To conclude, we address crucial challenges and promising research paths for the future of emotion in AI with the hope that more researchers will develop an interest for the topic and find it easier to develop their own contributions.

Normal blindness to visible objects seems to be the result of limited-capacity prediction mechanisms in the brain

Jeremy M. Wolfe, Anna Kosovicheva, Benjamin Wolfe, Normal blindness: when we Look But Fail To See, Trends in Cognitive Sciences, Volume 26, Issue 9, 2022, Pages 809-819 DOI: 10.1016/j.tics.2022.06.006.

Humans routinely miss important information that is \u2018right in front of our eyes\u2019, from overlooking typos in a paper to failing to see a cyclist in an intersection. Recent studies on these \u2018Looked But Failed To See\u2019 (LBFTS) errors point to a common mechanism underlying these failures, whether the missed item was an unexpected gorilla, the clearly defined target of a visual search, or that simple typo. We argue that normal blindness is the by-product of the limited-capacity prediction engine that is our visual system. The processes that evolved to allow us to move through the world with ease are virtually guaranteed to cause us to miss some significant stimuli, especially in important tasks like driving and medical image perception.

On the existence of multiple fundamental “languages” in the brain that use discrete symbols and a few basic structures

Stanislas Dehaene, Fosca Al Roumi, Yair Lakretz, Samuel Planton, Mathias Sabl�-Meyer, Symbols and mental programs: a hypothesis about human singularity, Trends in Cognitive Sciences, Volume 26, Issue 9, 2022, Pages 751-766 DOI: 10.1016/j.tics.2022.06.010.

Natural language is often seen as the single factor that explains the cognitive singularity of the human species. Instead, we propose that humans possess multiple internal languages of thought, akin to computer languages, which encode and compress structures in various domains (mathematics, music, shape\u2026). These languages rely on cortical circuits distinct from classical language areas. Each is characterized by: (i) the discretization of a domain using a small set of symbols, and (ii) their recursive composition into mental programs that encode nested repetitions with variations. In various tasks of elementary shape or sequence perception, minimum description length in the proposed languages captures human behavior and brain activity, whereas non-human primate data are captured by simpler nonsymbolic models. Our research argues in favor of discrete symbolic models of human thought.

Unexpected consequences of training smarthome systems with reinforcement learning: effects on human behaviours

S. Suman, A. Etemad and F. Rivest, TPotential Impacts of Smart Homes on Human Behavior: A Reinforcement Learning Approach, IEEE Transactions on Artificial Intelligence, vol. 3, no. 4, pp. 567-580, Aug. 2022 DOI: 10.1109/TAI.2021.3127483.

Smart homes are becoming increasingly popular as a result of advances in machine learning and cloud computing. Devices, such as smart thermostats and speakers, are now capable of learning from user feedback and adaptively adjust their settings to human preferences. Nonetheless, these devices might in turn impact human behavior. To investigate the potential impacts of smart homes on human behavior, we simulate a series of hierarchical-reinforcement learning-based human models capable of performing various activities\u2014namely, setting temperature and humidity for thermal comfort inside a Q-Learning-based smart home model. We then investigate the possibility of the human models\u2019 behaviors being altered as a result of the smart home and the human model adapting to one another. For our human model, the activities are based on hierarchical-reinforcement learning. This allows the human to learn how long it must continue a given activity and decide when to leave it. We then integrate our human model in the environment along with the smart home model and perform rigorous experiments considering various scenarios involving a model of a single human and models of two different humans with the smart home. Our experiments show that with the smart home, the human model can exhibit unexpected behaviors such as frequent changing of activities and an increase in the time required to modify the thermal preferences. With two human models, we interestingly observe that certain combinations of models result in normal behaviors, while other combinations exhibit the same unexpected behaviors as those observed from the single human experiment.

Improving the quality of memory replay in RL through an evolutionary algorithm biologically inspired

M. Ramicic and A. Bonarini, Augmented Memory Replay in Reinforcement Learning With Continuous Control, IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 2, pp. 485-496, June 2022 DOI: 10.1109/TCDS.2021.3050723.

Online reinforcement learning agents are currently able to process an increasing amount of data by converting it into a higher order value functions. This expansion of the information collected from the environment increases the agent\u2019s state space enabling it to scale up to more complex problems but also increases the risk of forgetting by learning on redundant or conflicting data. To improve the approximation of a large amount of data, a random mini-batch of the past experiences that are stored in the replay memory buffer is often replayed at each learning step. The proposed work takes inspiration from a biological mechanism which acts as a protective layer of higher cognitive functions found in mammalian brain: active memory consolidation mitigates the effect of forgetting previous memories by dynamically processing the new ones. Similar dynamics are implemented by the proposed augmented memory replay or AMR algorithm. The architecture of AMR , based on a simple artificial neural network is able to provide an augmentation policy which modifies each of the agents experiences by augmenting their relevance prior to storing them in the replay memory. The function approximator of AMR is evolved using genetic algorithm in order to obtain the specific augmentation policy function that yields the best performance of a learning agent in a specific environment given by its received cumulative reward. Experimental results show that an evolved AMR augmentation function capable of increasing the significance of the specific memories is able to further increase the stability and convergence speed of the learning algorithms dealing with the complexity of continuous action domains.

Modelling the perception of time in the human brain through RL with eligibility traces

I. Louren�o, R. Mattila, R. Ventura and B. Wahlberg, A Biologically Inspired Computational Model of Time Perception, IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 2, pp. 258-268, June 2022 DOI: 10.1109/TCDS.2021.3120301.

Time perception\u2014how humans and animals perceive the passage of time\u2014forms the basis for important cognitive skills, such as decision making, planning, and communication. In this work, we propose a framework for examining the mechanisms responsible for time perception. We first model neural time perception as a combination of two known timing sources: internal neuronal mechanisms and external (environmental) stimuli, and design a decision-making framework to replicate them. We then implement this framework in a simulated robot. We measure the robot\u2019s success on a temporal discrimination task originally performed by mice to evaluate their capacity to exploit temporal knowledge. We conclude that the robot is able to perceive time similarly to animals when it comes to their intrinsic mechanisms of interpreting time and performing time-aware actions. Next, by analyzing the behavior of agents equipped with the framework, we propose an estimator to infer characteristics of the timing mechanisms intrinsic to the agents. In particular, we show that from their empirical action probability distribution, we are able to estimate parameters used for perceiving time. Overall, our work shows promising results when it comes to drawing conclusions regarding some of the characteristics present in biological timing mechanisms.

NOTE: See also H. Basgol, I. Ayhan and E. Ugur, “Time Perception: A Review on Psychological, Computational, and Robotic Models,” in IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 2, pp. 301-315, June 2022, doi: 10.1109/TCDS.2021.3059045.

Dealing with the exploration with a nice introduction to the problem

Jiayi Lu, Shuai Han, Shuai L�, Meng Kang, Junwei Zhang, Sampling diversity driven exploration with state difference guidance, Expert Systems with Applications, Volume 203, 2022 DOI: 10.1016/j.eswa.2022.117418.

Exploration is one of the key issues of deep reinforcement learning, especially in the environments with sparse or deceptive rewards. Exploration based on intrinsic rewards can handle these environments. However, these methods cannot take both global interaction dynamics and local environment changes into account simultaneously. In this paper, we propose a novel intrinsic reward for off-policy learning, which not only encourages the agent to take actions not fully learned from a global perspective, but also instructs the agent to trigger remarkable changes in the environment from a local perspective. Meanwhile, we propose the double-actors\u2013double-critics framework to combine intrinsic rewards with extrinsic rewards to avoid the inappropriate combination of intrinsic and extrinsic rewards in previous methods. This framework can be applied to off-policy learning algorithms based on the actor\u2013critic method. We provide a comprehensive evaluation of our approach on the MuJoCo benchmark environments. The results demonstrate that our method can perform effective exploration in the environments with dense, deceptive and sparse rewards. Besides, we conduct sufficient ablation and quantitative analyses to intrinsic rewards. Furthermore, we also verify the superiority and rationality of our double-actors\u2013double-critics framework through comparative experiments.

Increasing exploration when the agent performs worse, decreasing when performing better, in the context of DQN for distributing computation among cloud and edge servers, also dealing with hybridization of RL with Fuzzy

Do Bao Son, Ta Huu Binh, Hiep Khac Vo, Binh Minh Nguyen, Huynh Thi Thanh Binh, Shui Yu, Value-based reinforcement learning approaches for task offloading in Delay Constrained Vehicular Edge Computing, Engineering Applications of Artificial Intelligence, Volume 113, 2022 DOI: 10.1016/j.engappai.2022.104898.

In the age of booming information technology, human-being has witnessed the need for new paradigms with both high computational capability and low latency. A potential solution is Vehicular Edge Computing (VEC). Previous work proposed a Fuzzy Deep Q-Network in Offloading scheme (FDQO) that combines Fuzzy rules and Deep Q-Network (DQN) to improve DQN\u2019s early performance by using Fuzzy Controller (FC). However, we notice that frequent usage of FC can hinder the future growth performance of model. One way to overcome this issue is to remove Fuzzy Controller entirely. We introduced an algorithm called baseline DQN (b-DQN), represented by its two variants Static baseline DQN (Sb-DQN) and Dynamic baseline DQN (Db-DQN), to modify the exploration rate base on the average rewards of closest observations. Our findings confirm that these baseline DQN algorithms surpass traditional DQN models in terms of average Quality of Experience (QoE) in 100 time slots by about 6%, but still suffer from poor early performance (such as in the first 5 time slots). Here, we introduce baseline FDQO (b-FDQO). This algorithm has a strategy to modify the Fuzzy Logic usage instead of removing it entirely while still observing the rewards to modify the exploration rate. It brings a higher average QoE in the first 5 time slots compared to other non-fuzzy-logic algorithms by at least 55.12%, prevent the model from getting too bad result over all time slots, while having the late performance as good as that of b-DQN.

Live-RL enhancement / reduction of unsafe situations by reducing the transition possibility of unsafe actions

Serhat Duman, Hamdi Tolga Kahraman, Yusuf Sonmez, Ugur Guvenc, Mehmet Kati, Sefa Aras, A powerful meta-heuristic search algorithm for solving global optimization and real-world solar photovoltaic parameter estimation problems, Engineering Applications of Artificial Intelligence, Volume 111, 2022 DOI: 10.1016/j.engappai.2022.104763.

The teaching-learning-based artificial bee colony (TLABC) is a new hybrid swarm-based metaheuristic search algorithm. It combines the exploitation of the teaching learning-based optimization (TLBO) with the exploration of the artificial bee colony (ABC). With the hybridization of these two nature-inspired swarm intelligence algorithms, a robust method has been proposed to solve global optimization problems. However, as with swarm-based algorithms, with the TLABC method, it is a great challenge to effectively simulate the selection process. Fitness-distance balance (FDB) is a powerful recently developed method to effectively imitate the selection process in nature. In this study, the three search phases of the TLABC algorithm were redesigned using the FDB method. In this way, the FDB-TLABC algorithm, which imitates nature more effectively and has a robust search performance, was developed. To investigate the exploitation, exploration, and balanced search capabilities of the proposed algorithm, it was tested on standard and complex benchmark suites (Classic, IEEE CEC 2014, IEEE CEC 2017, and IEEE CEC 2020). In order to verify the performance of the proposed FDB-TLABC for global optimization problems and in the photovoltaic parameter estimation problem (a constrained real-world engineering problem) a very comprehensive and qualified experimental study was carried out according to IEEE CEC standards. Statistical analysis results confirmed that the proposed FDB-TLABC provided the best optimum solution and yielded a superior performance compared to other optimization methods.