Tag Archives: Dimensionality Reduction

Evidences of the dimensionality reduction and augmentation performed by the brain

Casper Kerrén, Daniel Reznik, Christian F. Doeller, Benjamin J. Griffiths, Exploring the role of dimensionality transformation in episodic memory, Trends in Cognitive Sciences, Volume 29, Issue 7, 2025, Pages 614-626, 10.1016/j.tics.2025.01.007.

Episodic memory must accomplish two adversarial goals: encoding and storing a multitude of experiences without exceeding the finite neuronal structure of the brain, and recalling memories in vivid detail. Dimensionality reduction and expansion (‘dimensionality transformation’) enable the brain to meet these demands. Reduction compresses sensory input into simplified, storable codes, while expansion reconstructs vivid details. Although these processes are essential to memory, their neural mechanisms for episodic memory remain unclear. Drawing on recent insights from cognitive psychology, systems neuroscience, and neuroanatomy, we propose two accounts of how dimensionality transformation occurs in the brain: structurally (via corticohippocampal pathways) and functionally (through neural oscillations). By examining cross-species evidence, we highlight neural mechanisms that may support episodic memory and identify crucial questions for future research.

Reducing dimensionality of brain-body state dynamics

Daniel S. Kluger, Micah G. Allen, Joachim Gross, Brain–body states embody complex temporal dynamics, Trends in Cognitive Sciences, Volume 28, Issue 8, 2024, Pages 695-698 DOI: 10.1016/j.tics.2024.05.003.

We propose a computational framework for high-dimensional brain–body states as transient embodiments of nested internal and external dynamics governed by interoception. Unifying recent theoretical work, we suggest ways to reduce arbitrary state complexity to an observable number of features in order to accurately predict and intervene in pathological trajectories.

Using abstraction of dimensions in RRT motion planning

Xanthidis, M., Esposito, J.M., Rekleitis, I. et al., Motion Planning by Sampling in Subspaces of Progressively Increasing Dimension, . J Intell Robot Syst 100, 777–789 (2020) DOI: 10.1007/s10846-020-01217-w.

This paper introduces an enhancement to traditional sampling-based planners, resulting in efficiency increases for high-dimensional holonomic systems such as hyper-redundant manipulators, snake-like robots, and humanoids. Despite the performance advantages of modern sampling-based motion planners, solving high dimensional planning problems in near real-time remains a considerable challenge. The proposed enhancement to popular sampling-based planning algorithms is aimed at circumventing the exponential dependence on dimensionality, by progressively exploring lower dimensional volumes of the configuration space. Extensive experiments comparing the enhanced and traditional version of RRT, RRT-Connect, and Bidirectional T-RRT on both a planar hyper-redundant manipulator and the Baxter humanoid robot show significant acceleration, up to two orders of magnitude, on computing a solution. We also explore important implementation issues in the sampling process and discuss the limitations of this method.

Accelerating the updating stage of a PF through selection of a few representative particles and interpolation of their weights to the rest, with interesting methods for selection and interpolation and a nice related work of efficiency-improved PFs

Shabat, G.; Shmueli, Y.; Bermanis, A.; Averbuch, A., Accelerating Particle Filter Using Randomized Multiscale and Fast Multipole Type Methods, Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.37, no.7, pp.1396,1407, July 1 2015, DOI: 10.1109/TPAMI.2015.2392754.

Particle filter is a powerful tool for state tracking using non-linear observations. We present a multiscale based method that accelerates the tracking computation by particle filters. Unlike the conventional way, which calculates weights over all particles in each cycle of the algorithm, we sample a small subset from the source particles using matrix decomposition methods. Then, we apply a function extension algorithm that uses a particle subset to recover the density function for all the rest of the particles not included in the chosen subset. The computational effort is substantial especially when multiple objects are tracked concurrently. The proposed algorithm significantly reduces the computational load. By using the Fast Gaussian Transform, the complexity of the particle selection step is reduced to a linear time in n and k , where n is the number of particles and k is the number of particles in the selected subset. We demonstrate our method on both simulated and on real data such as object tracking in video sequences.