Category Archives: Robotics

Abstract data-type for exchanging information in real-time systems, prioritizing the access to newest data rather than to oldest

Dantam, N.T.; Lofaro, D.M.; Hereid, A.; Oh, P.Y.; Ames, A.D.; Stilman, M., The Ach Library: A New Framework for Real-Time Communication, Robotics & Automation Magazine, IEEE , vol.22, no.1, pp.76,85, March 2015, DOI: 10.1109/MRA.2014.2356937.

Correct real-time software is vital for robots in safety-critical roles such as service and disaster response. These systems depend on software for locomotion, navigation, manipulation, and even seemingly innocuous tasks such as safely regulating battery voltage. A multiprocess software design increases robustness by isolating errors to a single process, allowing the rest of the system to continue operation. This approach also assists with modularity and concurrency. For real-time tasks, such as dynamic balance and force control of manipulators, it is critical to communicate the latest data sample with minimum latency. There are many communication approaches intended for both general-purpose and real-time needs [9], [13], [15], [17], [19]. Typical methods focus on reliable communication or network transparency and accept a tradeoff of increased message latency or the potential to discard newer data. By focusing instead on the specific case of real-time communication on a single host, we reduce communication latency and guarantee access to the latest sample. We present a new interprocess communication (IPC) library, Ach which addresses this need, and discuss its application for real-time multiprocess control on three humanoid robots (Figure 1). (Ach is available at http://www.golems.org/projects/ach.html. The name Ach comes from the common abbreviation for the motor neurotransmitter Acetylcholine and the computer networking term ACK.).

Reinforcement learning used for an adaptive attention mechanism, and integrated in an architecture with both top-down and bottom-up vision processing

Ognibene, D.; Baldassare, G., Ecological Active Vision: Four Bioinspired Principles to Integrate Bottom–Up and Adaptive Top–Down Attention Tested With a Simple Camera-Arm Robot, Autonomous Mental Development, IEEE Transactions on , vol.7, no.1, pp.3,25, March 2015. DOI: 10.1109/TAMD.2014.2341351.

Vision gives primates a wealth of information useful to manipulate the environment, but at the same time it can easily overwhelm their computational resources. Active vision is a key solution found by nature to solve this problem: a limited fovea actively displaced in space to collect only relevant information. Here we highlight that in ecological conditions this solution encounters four problems: 1) the agent needs to learn where to look based on its goals; 2) manipulation causes learning feedback in areas of space possibly outside the attention focus; 3) good visual actions are needed to guide manipulation actions, but only these can generate learning feedback; and 4) a limited fovea causes aliasing problems. We then propose a computational architecture (“BITPIC”) to overcome the four problems, integrating four bioinspired key ingredients: 1) reinforcement-learning fovea-based top-down attention; 2) a strong vision-manipulation coupling; 3) bottom-up periphery-based attention; and 4) a novel action-oriented memory. The system is tested with a simple simulated camera-arm robot solving a class of search-and-reach tasks involving color-blob “objects.” The results show that the architecture solves the problems, and hence the tasks, very efficiently, and highlight how the architecture principles can contribute to a full exploitation of the advantages of active vision in ecological conditions.

Automatic synthetis of controllers for robotic tasks from the specification of state-machine-like missions, nonlinear models of the robot and a representation of the robot workspace

Jonathan A. DeCastro and Hadas Kress-Gazit, 2015, Synthesis of nonlinear continuous controllers for verifiably correct high-level, reactive behaviors, The International Journal of Robotics Research, 34: 378-394, DOI: 10.1177/0278364914557736.

Planning robotic missions in environments shared by humans involves designing controllers that are reactive to the environment yet able to fulfill a complex high-level task. This paper introduces a new method for designing low-level controllers for nonlinear robotic platforms based on a discrete-state high-level controller encoding the behaviors of a reactive task specification. We build our method upon a new type of trajectory constraint which we introduce in this paper, reactive composition, to provide the guarantee that any high-level reactive behavior may be fulfilled at any moment during the continuous execution. We generate pre-computed motion controllers in a piecewise manner by adopting a sample-based synthesis method that associates a certificate of invariance with each controller in the sample set. As a demonstration of our approach, we simulate different robotic platforms executing complex tasks in a variety of environments.

A nice review of the problem of kinematic modeling of wheeled mobile robots and a new approach that delays the use of coordinate frames

Alonzo Kelly and Neal Seegmiller, 2015, Recursive kinematic propagation for wheeled mobile robots, The International Journal of Robotics Research, 34: 288-313, DOI: 10.1177/0278364914551773.

The problem of wheeled mobile robot kinematics is formulated using the transport theorem of vector algebra. Doing so postpones the introduction of coordinates until after the expressions for the relevant Jacobians have been derived. This approach simplifies the derivation while also providing the solution to the general case in 3D, including motion over rolling terrain. Angular velocity remains explicit rather than encoded as the time derivative of a rotation matrix. The equations are derived and can be implemented recursively using a single equation that applies to all cases. Acceleration kinematics are uniquely derivable in reasonable effort. The recursive formulation also leads to efficient computer implementations that reflect the modularity of real mechanisms.

A survey of semantic mapping for mobile robots

Ioannis Kostavelis, Antonios Gasteratos, 2015, Semantic mapping for mobile robotics tasks: A survey, Robotics and Autonomous Systems, Volume 66, April 2015, Pages 86-103, ISSN 0921-8890, DOI: 10.1016/j.robot.2014.12.006.

The evolution of contemporary mobile robotics has given thrust to a series of additional conjunct technologies. Of such is the semantic mapping, which provides an abstraction of space and a means for human\u2013robot communication. The recent introduction and evolution of semantic mapping motivated this survey, in which an explicit analysis of the existing methods is sought. The several algorithms are categorized according to their primary characteristics, namely scalability, inference model, temporal coherence and topological map usage. The applications involving semantic maps are also outlined in the work at hand, emphasizing on human interaction, knowledge representation and planning. The existence of publicly available validation datasets and benchmarking, suitable for the evaluation of semantic mapping techniques is also discussed in detail. Last, an attempt to address open issues and questions is also made.

Novel recursive bayesian estimator based on approaching pdfs by polynomials and keeping a hypothesis for each of its modes

Huang, G.; Zhou, K.; Trawny, N.; Roumeliotis, S.I., (2015), A Bank of Maximum A Posteriori (MAP) Estimators for Target Tracking, Robotics, IEEE Transactions on , vol.31, no.1, pp.85,103. DOI: TRO.2014.2378432

.

Nonlinear estimation problems, such as range-only and bearing-only target tracking, are often addressed using linearized estimators, e.g., the extended Kalman filter (EKF). These estimators generally suffer from linearization errors as well as the inability to track multimodal probability density functions. In this paper, we propose a bank of batch maximum a posteriori (MAP) estimators as a general estimation framework that provides relinearization of the entire state trajectory, multihypothesis tracking, and an efficient hypothesis generation scheme. Each estimator in the bank is initialized using a locally optimal state estimate for the current time step. Every time a new measurement becomes available, we relax the original batch-MAP problem and solve it incrementally. More specifically, we convert the relaxed one-step-ahead cost function into polynomial or rational form and compute all the local minima analytically. These local minima generate highly probable hypotheses for the target’s trajectory and hence greatly improve the quality of the overall MAP estimate. Additionally, pruning of least probable hypotheses and marginalization of old states are employed to control the computational cost. Monte Carlo simulation and real-world experimental results show that the proposed approach significantly outperforms the standard EKF, the batch-MAP estimator, and the particle filter.

Mental imaginery for a mobile robot that learns obstacle avoidance

Wilmer Gaona, Esaú Escobar, Jorge Hermosillo, Bruno Lara (2015), Anticipation by multi-modal association through an artificial mental imagery process, Connection Science, 27:1, 68-88, DOI: 10.1080/09540091.2014.95628

Mental imagery has become a central issue in research laboratories seeking to emulate basic cognitive abilities in artificial agents. In this work, we propose a computational model to produce an anticipatory behaviour by means of a multi-modal off-line hebbian association. Unlike the current state of the art, we propose to apply hebbian learning during an internal sensorimotor simulation, emulating a process of mental imagery. We associate visual and tactile stimuli re-enacted by a long-term predictive simulation chain motivated by covert actions. As a result, we obtain a neural network which provides a robot with a mechanism to produce a visually conditioned obstacle avoidance behaviour. We developed our system in a physical Pioneer 3-DX robot and realised two experiments. In the first experiment we test our model on one individual navigating in two different mazes. In the second experiment we assess the robustness of the model by testing in a single environment five individuals trained under different conditions. We believe that our work offers an underpinning mechanism in cognitive robotics for the study of motor control strategies based on internal simulations. These strategies can be seen analogous to the mental imagery process known in humans, opening thus interesting pathways to the construction of upper-level grounded cognitive abilities.

Active exploration strategy for RL in robots, and approximation of value function by Gaussian processes

Jen Jen Chung, Nicholas R.J. Lawrance, Salah Sukkarieh (2015), Learning to soar: Resource-constrained exploration in reinforcement learning, The International Journal of Robotics Research vol. 34, pp. 158-172. DOI: 10.1177/0278364914553683

This paper examines temporal difference reinforcement learning with adaptive and directed exploration for resource-limited missions. The scenario considered is that of an unpowered aerial glider learning to perform energy-gaining flight trajectories in a thermal updraft. The presented algorithm, eGP-SARSA(\u03bb), uses a Gaussian process regression model to estimate the value function in a reinforcement learning framework. The Gaussian process also provides a variance on these estimates that is used to measure the contribution of future observations to the Gaussian process value function model in terms of information gain. To avoid myopic exploration we developed a resource-weighted objective function that combines an estimate of the future information gain using an action rollout with the estimated value function to generate directed explorative action sequences. A number of modifications and computational speed-ups to the algorithm are presented along with a standard GP-SARSA(\u03bb) implementation with Formula -greedy exploration to compare the respective learning performances. The results show that under this objective function, the learning agent is able to continue exploring for better state-action trajectories when platform energy is high and follow conservative energy-gaining trajectories when platform energy is low.

Solving the problem of the slow learning rate of reinfocerment learning through the acquisition of the transition model from the data

Deisenroth, M.P.; Fox, D.; Rasmussen, C.E., Gaussian Processes for Data-Efficient Learning in Robotics and Control, Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.37, no.2, pp.408,423, Feb. 2015, DOI: 10.1109/TPAMI.2013.218

Autonomous learning has been a promising direction in control and robotics for more than a decade since data-driven learning allows to reduce the amount of engineering knowledge, which is otherwise required. However, autonomous reinforcement learning (RL) approaches typically require many interactions with the system to learn controllers, which is a practical limitation in real systems, such as robots, where many interactions can be impractical and time consuming. To address this problem, current learning approaches typically require task-specific knowledge in form of expert demonstrations, realistic simulators, pre-shaped policies, or specific knowledge about the underlying dynamics. In this paper, we follow a different approach and speed up learning by extracting more information from data. In particular, we learn a probabilistic, non-parametric Gaussian process transition model of the system. By explicitly incorporating model uncertainty into long-term planning and controller learning our approach reduces the effects of model errors, a key problem in model-based learning. Compared to state-of-the art RL our model-based policy search method achieves an unprecedented speed of learning. We demonstrate its applicability to autonomous learning in real robot and control tasks.

Mathematical model of quartz crystal clocks and Kalman Filter estimation for clock synchronization

Giorgi, G., An Event-Based Kalman Filter for Clock Synchronization, Instrumentation and Measurement, IEEE Transactions on , vol.64, no.2, pp.449,457, Feb. 2015, DOI: 10.1109/TIM.2014.2340631

The distribution of a time reference has long been a significant research topic in measurement and different solutions have been proposed over the years. In this context, the design of servo clocks plays an important role to get better performances by smoothing the influence of noise sources affecting a synchronization system. A servo clock is asked to provide an adaptive and conservative measure of the time distance between the local clock and the time reference by minimizing, if possible, the energy consumption. In this paper, we propose a servo clock based on an efficient implementation of the Kalman filter (KF), called in the following event-based KF that allows to overcome drawbacks of existing KF-based servo clocks with furthermore a significant reduction of the computational cost. An in-depth analysis of the synchronization uncertainty has been reported to completely characterize the proposed solution; and finally, some guidelines on how to correctly initialize the KF are provided.